These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27211782)

  • 21. A new shoulder model with a biologically inspired glenohumeral joint.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Med Eng Phys; 2016 Sep; 38(9):969-77. PubMed ID: 27381499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A global optimization method for prediction of muscle forces of human musculoskeletal system.
    Li G; Pierce JE; Herndon JH
    J Biomech; 2006; 39(3):522-9. PubMed ID: 16389092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Optimization Framework to Improve the Computational Cost of Muscle Activation Prediction for a Neuromusculoskeletal System.
    Rahmati SMA; Rostami M; Karimi A
    Neural Comput; 2019 Mar; 31(3):574-595. PubMed ID: 30645182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse optimization: functional and physiological considerations related to the force-sharing problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 1997; 25(4-5):371-407. PubMed ID: 9505137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector.
    Modenese L; Gopalakrishnan A; Phillips AT
    J Biomech; 2013 Apr; 46(6):1193-200. PubMed ID: 23427941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling.
    Cadová M; Vilímek M
    Acta Bioeng Biomech; 2009; 11(3):59-64. PubMed ID: 20131752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.
    Bonnet V; Azevedo-Coste C; Robert T; Fraisse P; Venture G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):987-997. PubMed ID: 28278473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior.
    Rengifo C; Aoustin Y; Plestan F; Chevallereau C
    J Biomech Eng; 2010 Apr; 132(4):041009. PubMed ID: 20387972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping.
    Cleather DJ; Goodwin JE; Bull AM
    Ann Biomed Eng; 2011 Jan; 39(1):147-60. PubMed ID: 20862546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse and forward dynamics: models of multi-body systems.
    Otten E
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1493-500. PubMed ID: 14561340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasible muscle activation ranges based on inverse dynamics analyses of human walking.
    Simpson CS; Sohn MH; Allen JL; Ting LH
    J Biomech; 2015 Sep; 48(12):2990-7. PubMed ID: 26300401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training.
    Schellenberg F; Oberhofer K; Taylor WR; Lorenzetti S
    Comput Math Methods Med; 2015; 2015():483921. PubMed ID: 26417378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. General coordination principles elucidated by forward dynamics: minimum fatique does not explain muscle excitation in dynamic tasks.
    Kautz SA; Neptune RR; Zajac FE
    Motor Control; 2000 Jan; 4(1):75-80; discussion 97-116. PubMed ID: 10675813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of autonomic nervous activity using the inverse dynamic model of the pupil muscle plant.
    Usui S; Hirata Y
    Ann Biomed Eng; 1995; 23(4):375-87. PubMed ID: 7486345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle moment-arms: a key element in muscle-force estimation.
    Ingram D; Engelhardt C; Farron A; Terrier A; Müllhaupt P
    Comput Methods Biomech Biomed Engin; 2015; 18(5):506-13. PubMed ID: 23998280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Inverse Dynamics Optimization Formulation With Recursive B-Spline Derivatives and Partition of Unity Contacts: Demonstration Using Two-Dimensional Musculoskeletal Arm and Gait.
    Xiang Y
    J Biomech Eng; 2019 Mar; 141(3):. PubMed ID: 30615016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.