BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 27211835)

  • 1. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.
    Debaty G; Lurie K; Metzger A; Lick M; Bartos JA; Rees JN; McKnite S; Puertas L; Pepe P; Fowler R; Yannopoulos D
    Resuscitation; 2016 Aug; 105():29-35. PubMed ID: 27211835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17 min of untreated cardiac arrest.
    Bartos JA; Matsuura TR; Sarraf M; Youngquist ST; McKnite SH; Rees JN; Sloper DT; Bates FS; Segal N; Debaty G; Lurie KG; Neumar RW; Metzger JM; Riess ML; Yannopoulos D
    Resuscitation; 2015 Feb; 87():7-13. PubMed ID: 25447036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early coronary revascularization improves 24h survival and neurological function after ischemic cardiac arrest. A randomized animal study.
    Sideris G; Magkoutis N; Sharma A; Rees J; McKnite S; Caldwell E; Sarraf M; Henry P; Lurie K; Garcia S; Yannopoulos D
    Resuscitation; 2014 Feb; 85(2):292-8. PubMed ID: 24200891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest.
    Wolcke BB; Mauer DK; Schoefmann MF; Teichmann H; Provo TA; Lindner KH; Dick WF; Aeppli D; Lurie KG
    Circulation; 2003 Nov; 108(18):2201-5. PubMed ID: 14568898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest.
    Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K
    Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of active compression decompression cardiopulmonary resuscitation and the inspiratory impedance threshold device: state of the art.
    Frascone RJ; Bitz D; Lurie K
    Curr Opin Crit Care; 2004 Jun; 10(3):193-201. PubMed ID: 15166836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Head and thorax elevation during active compression decompression cardiopulmonary resuscitation with an impedance threshold device improves cerebral perfusion in a swine model of prolonged cardiac arrest.
    Moore JC; Segal N; Lick MC; Dodd KW; Salverda BJ; Hinke MB; Robinson AE; Debaty G; Lurie KG
    Resuscitation; 2017 Dec; 121():195-200. PubMed ID: 28827197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of Impedance Threshold Device use during cardiopulmonary resuscitation with post-cardiac arrest Acute Kidney Injury.
    Niforopoulou P; Iacovidou N; Lelovas P; Karlis G; Papalois Α; Siakavellas S; Spapis V; Kaparos G; Siafaka I; Xanthos T
    Am J Emerg Med; 2017 Jun; 35(6):846-854. PubMed ID: 28131602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent head up cardiopulmonary resuscitation haemodynamics are observed across porcine and human cadaver translational models.
    Moore JC; Holley J; Segal N; Lick MC; Labarère J; Frascone RJ; Dodd KW; Robinson AE; Lick C; Klein L; Ashton A; McArthur A; Tsangaris A; Makaretz A; Makaretz M; Debaty G; Pepe PE; Lurie KG
    Resuscitation; 2018 Nov; 132():133-139. PubMed ID: 29702188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest.
    Moore JC; Salverda B; Rojas-Salvador C; Lick M; Debaty G; G Lurie K
    Resuscitation; 2021 Jan; 158():220-227. PubMed ID: 33027619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation.
    Yannopoulos D; Bartos JA; George SA; Sideris G; Voicu S; Oestreich B; Matsuura T; Shekar K; Rees J; Aufderheide TP
    Resuscitation; 2017 Jan; 110():6-11. PubMed ID: 27771299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemic post-conditioning and vasodilator therapy during standard cardiopulmonary resuscitation to reduce cardiac and brain injury after prolonged untreated ventricular fibrillation.
    Yannopoulos D; Segal N; Matsuura T; Sarraf M; Thorsgard M; Caldwell E; Rees J; McKnite S; Santacruz K; Lurie KG
    Resuscitation; 2013 Aug; 84(8):1143-9. PubMed ID: 23376583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model.
    Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE
    Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doubling survival and improving clinical outcomes using a left ventricular assist device instead of chest compressions for resuscitation after prolonged cardiac arrest: a large animal study.
    Derwall M; Brücken A; Bleilevens C; Ebeling A; Föhr P; Rossaint R; Kern KB; Nix C; Fries M
    Crit Care; 2015 Mar; 19(1):123. PubMed ID: 25886909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after prolonged untreated ventricular fibrillation.
    Segal N; Matsuura T; Caldwell E; Sarraf M; McKnite S; Zviman M; Aufderheide TP; Halperin HR; Lurie KG; Yannopoulos D
    Resuscitation; 2012 Nov; 83(11):1397-403. PubMed ID: 22521449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve.
    Lurie KG; Coffeen P; Shultz J; McKnite S; Detloff B; Mulligan K
    Circulation; 1995 Mar; 91(6):1629-32. PubMed ID: 7882467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression-decompression CPR utilizing an impedance threshold device.
    Burnett AM; Segal N; Salzman JG; McKnite MS; Frascone RJ
    Resuscitation; 2012 Aug; 83(8):1021-4. PubMed ID: 22445865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Ventilation during Cardiopulmonary Resuscitation Results in Better Neurological Outcomes in a Porcine Model of Cardiac Arrest.
    Kim YW; Kim HI; Hwang SO; Kim YS; An GJ; Cha KC
    Yonsei Med J; 2018 Dec; 59(10):1232-1239. PubMed ID: 30450858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.