These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27211836)
1. An accurate method for real-time chest compression detection from the impedance signal. Kwok H; Coult J; Liu C; Blackwood J; Kudenchuk PJ; Rea TD; Sherman L Resuscitation; 2016 Aug; 105():22-8. PubMed ID: 27211836 [TBL] [Abstract][Full Text] [Related]
2. Performance of chest compressions by laypersons during the Public Access Defibrillation Trial. Rea TD; Stickney RE; Doherty A; Lank P Resuscitation; 2010 Mar; 81(3):293-6. PubMed ID: 20044198 [TBL] [Abstract][Full Text] [Related]
3. Automatic detection of chest compressions for the assessment of CPR-quality parameters. Ayala U; Eftestøl T; Alonso E; Irusta U; Aramendi E; Wali S; Kramer-Johansen J Resuscitation; 2014 Jul; 85(7):957-63. PubMed ID: 24746788 [TBL] [Abstract][Full Text] [Related]
5. Monitoring chest compression rate in automated external defibrillators using the autocorrelation of the transthoracic impedance. Ruiz de Gauna S; Ruiz JM; Gutiérrez JJ; González-Otero DM; Alonso D; Corcuera C; Urtusagasti JF PLoS One; 2020; 15(9):e0239950. PubMed ID: 32997721 [TBL] [Abstract][Full Text] [Related]
6. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest. Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of automated rhythm assessment in chest compression pauses during cardiopulmonary resuscitation. Ruiz J; Ayala U; Ruiz de Gauna S; Irusta U; González-Otero D; Alonso E; Kramer-Johansen J; Eftestøl T Resuscitation; 2013 Sep; 84(9):1223-8. PubMed ID: 23402965 [TBL] [Abstract][Full Text] [Related]
8. Assessment of CPR interruptions from transthoracic impedance during use of the LUCAS™ mechanical chest compression system. Yost D; Phillips RH; Gonzales L; Lick CJ; Satterlee P; Levy M; Barger J; Dodson P; Poggi S; Wojcik K; Niskanen RA; Chapman FW Resuscitation; 2012 Aug; 83(8):961-5. PubMed ID: 22310728 [TBL] [Abstract][Full Text] [Related]
9. Chest compression rate feedback based on transthoracic impedance. González-Otero DM; Ruiz de Gauna S; Ruiz J; Daya MR; Wik L; Russell JK; Kramer-Johansen J; Eftestøl T; Alonso E; Ayala U Resuscitation; 2015 Aug; 93():82-8. PubMed ID: 26051811 [TBL] [Abstract][Full Text] [Related]
10. Mechanical chest compressions improved aspects of CPR in the LINC trial. Esibov A; Banville I; Chapman FW; Boomars R; Box M; Rubertsson S Resuscitation; 2015 Jun; 91():116-21. PubMed ID: 25766094 [TBL] [Abstract][Full Text] [Related]
11. A Method to Detect Presence of Chest Compressions During Resuscitation Using Transthoracic Impedance. Coult J; Blackwood J; Rea TD; Kudenchuk PJ; Kwok H IEEE J Biomed Health Inform; 2020 Mar; 24(3):768-774. PubMed ID: 31144648 [TBL] [Abstract][Full Text] [Related]
12. Compressions during defibrillator charging shortens shock pause duration and improves chest compression fraction during shockable out of hospital cardiac arrest. Cheskes S; Common MR; Byers PA; Zhan C; Morrison LJ Resuscitation; 2014 Aug; 85(8):1007-11. PubMed ID: 24830868 [TBL] [Abstract][Full Text] [Related]
14. Transthoracic impedance used to evaluate performance of cardiopulmonary resuscitation during out of hospital cardiac arrest. Stecher FS; Olsen JA; Stickney RE; Wik L Resuscitation; 2008 Dec; 79(3):432-7. PubMed ID: 19061785 [TBL] [Abstract][Full Text] [Related]
15. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest. Bobrow BJ; Vadeboncoeur TF; Stolz U; Silver AE; Tobin JM; Crawford SA; Mason TK; Schirmer J; Smith GA; Spaite DW Ann Emerg Med; 2013 Jul; 62(1):47-56.e1. PubMed ID: 23465553 [TBL] [Abstract][Full Text] [Related]
16. Reliability and accuracy of the thoracic impedance signal for measuring cardiopulmonary resuscitation quality metrics. Alonso E; Ruiz J; Aramendi E; González-Otero D; Ruiz de Gauna S; Ayala U; Russell JK; Daya M Resuscitation; 2015 Mar; 88():28-34. PubMed ID: 25524362 [TBL] [Abstract][Full Text] [Related]
17. Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest before and after introduction of a mechanical chest compression device, LUCAS-2; a prospective, observational study. Tranberg T; Lassen JF; Kaltoft AK; Hansen TM; Stengaard C; Knudsen L; Trautner S; Terkelsen CJ Scand J Trauma Resusc Emerg Med; 2015 Apr; 23():37. PubMed ID: 25898992 [TBL] [Abstract][Full Text] [Related]
18. Suppression of the cardiopulmonary resuscitation artefacts using the instantaneous chest compression rate extracted from the thoracic impedance. Aramendi E; Ayala U; Irusta U; Alonso E; Eftestøl T; Kramer-Johansen J Resuscitation; 2012 Jun; 83(6):692-8. PubMed ID: 22198092 [TBL] [Abstract][Full Text] [Related]
19. Do manual chest compressions provide substantial ventilation during prehospital cardiopulmonary resuscitation? Vanwulpen M; Wolfskeil M; Duchatelet C; Hachimi-Idrissi S Am J Emerg Med; 2021 Jan; 39():129-131. PubMed ID: 33039236 [TBL] [Abstract][Full Text] [Related]
20. Rhythm analysis and charging during chest compressions reduces compression pause time. Partridge R; Tan Q; Silver A; Riley M; Geheb F; Raymond R Resuscitation; 2015 May; 90():133-7. PubMed ID: 25772540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]