BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 27212020)

  • 1. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response.
    Zhang Y; Hou Y; Liu C; Li Y; Guo W; Wu JL; Xu D; You X; Pan Y; Chen Y
    Free Radic Biol Med; 2016 Aug; 97():38-49. PubMed ID: 27212020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1.
    Hashimoto K; Simmons AN; Kajino-Sakamoto R; Tsuji Y; Ninomiya-Tsuji J
    Antioxid Redox Signal; 2016 Dec; 25(17):953-964. PubMed ID: 27245349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection.
    Hu B; Wei H; Song Y; Chen M; Fan Z; Qiu R; Zhu W; Xu W; Wang F
    J Virol; 2020 May; 94(10):. PubMed ID: 32161178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2.
    Qiu L; Wang M; Zhu Y; Xiang Y; Zhang Y
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress.
    Suzuki T; Yamamoto M
    J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway.
    Choi Y; Jiang Z; Shin WJ; Jung JU
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31852783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.
    Baird L; Yamamoto M
    Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells.
    Liang F; Cao W; Huang Y; Fang Y; Cheng Y; Pan S; Xu X
    Biofactors; 2019 Jul; 45(4):563-574. PubMed ID: 31131946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. USP15 negatively regulates Nrf2 through deubiquitination of Keap1.
    Villeneuve NF; Tian W; Wu T; Sun Z; Lau A; Chapman E; Fang D; Zhang DD
    Mol Cell; 2013 Jul; 51(1):68-79. PubMed ID: 23727018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory syncytial virus induces NRF2 degradation through a promyelocytic leukemia protein - ring finger protein 4 dependent pathway.
    Komaravelli N; Ansar M; Garofalo RP; Casola A
    Free Radic Biol Med; 2017 Dec; 113():494-504. PubMed ID: 29107745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z; Wu T; Zhao F; Lau A; Birch CM; Zhang DD
    Mol Cell Biol; 2011 May; 31(9):1800-11. PubMed ID: 21383067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-Repositioning Screening for Keap1-Nrf2 Binding Inhibitors using Fluorescence Correlation Spectroscopy.
    Yoshizaki Y; Mori T; Ishigami-Yuasa M; Kikuchi E; Takahashi D; Zeniya M; Nomura N; Mori Y; Araki Y; Ando F; Mandai S; Kasagi Y; Arai Y; Sasaki E; Yoshida S; Kagechika H; Rai T; Uchida S; Sohara E
    Sci Rep; 2017 Jun; 7(1):3945. PubMed ID: 28638054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption.
    Alves R; Suehiro CL; Oliveira FG; Frantz EDC; Medeiros RF; Vieira RP; Martins MA; Lin CJ; Nobrega ACLD; Toledo-Arruda AC
    J Appl Physiol (1985); 2020 Jan; 128(1):59-69. PubMed ID: 31647720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo.
    Park SY; Gurung R; Hwang JH; Kang JH; Jung HJ; Zeb A; Hwang JI; Park SJ; Maeng HJ; Shin D; Oh SH
    Redox Biol; 2023 Aug; 64():102783. PubMed ID: 37348157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.