BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 27212269)

  • 1. Interaction between cAMP and intracellular Ca(2+)-signaling pathways during odor-perception and adaptation in Drosophila.
    Murmu MS; Martin JR
    Biochim Biophys Acta; 2016 Sep; 1863(9):2156-74. PubMed ID: 27212269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons.
    Murmu MS; Stinnakre J; Martin JR
    J Exp Biol; 2010 Dec; 213(Pt 24):4163-73. PubMed ID: 21112997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-stores mediate adaptation in axon terminals of olfactory receptor neurons in Drosophila.
    Murmu MS; Stinnakre J; Réal E; Martin JR
    BMC Neurosci; 2011 Oct; 12():105. PubMed ID: 22024464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odor-induced cAMP production in Drosophila melanogaster olfactory sensory neurons.
    Miazzi F; Hansson BS; Wicher D
    J Exp Biol; 2016 Jun; 219(Pt 12):1798-803. PubMed ID: 27045092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of odorant adaptation in the olfactory receptor cell.
    Kurahashi T; Menini A
    Nature; 1997 Feb; 385(6618):725-9. PubMed ID: 9034189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction.
    Zufall F; Leinders-Zufall T; Greer CA
    J Neurophysiol; 2000 Jan; 83(1):501-12. PubMed ID: 10634891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila.
    Martín F; Charro MJ; Alcorta E
    J Comp Physiol A; 2001 Jun; 187(5):359-70. PubMed ID: 11529480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels.
    Bell JS; Wilson RI
    Neuron; 2016 Jul; 91(2):425-38. PubMed ID: 27373835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules.
    Takeuchi H; Imanaka Y; Hirono J; Kurahashi T
    J Gen Physiol; 2003 Sep; 122(3):255-64. PubMed ID: 12939391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit.
    Newquist G; Novenschi A; Kohler D; Mathew D
    eNeuro; 2016; 3(4):. PubMed ID: 27570823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.
    Liu G; Badeau RM; Tanimura A; Talamo BR
    J Neurochem; 2006 Mar; 96(6):1591-605. PubMed ID: 16539682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response.
    Martelli C; Carlson JR; Emonet T
    J Neurosci; 2013 Apr; 33(15):6285-97. PubMed ID: 23575828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity and response characteristics of human olfactory neurons.
    Rawson NE; Gomez G; Cowart B; Brand JG; Lowry LD; Pribitkin EA; Restrepo D
    J Neurophysiol; 1997 Mar; 77(3):1606-13. PubMed ID: 9084623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population.
    Si G; Kanwal JK; Hu Y; Tabone CJ; Baron J; Berck M; Vignoud G; Samuel ADT
    Neuron; 2019 Mar; 101(5):950-962.e7. PubMed ID: 30683545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of
    Gugel ZV; Maurais EG; Hong EJ
    Elife; 2023 May; 12():. PubMed ID: 37195027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
    Olsen SR; Bhandawat V; Wilson RI
    Neuron; 2007 Apr; 54(1):89-103. PubMed ID: 17408580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired odor adaptation in olfactory receptor neurons after inhibition of Ca2+/calmodulin kinase II.
    Leinders-Zufall T; Ma M; Zufall F
    J Neurosci; 1999 Jul; 19(14):RC19. PubMed ID: 10407061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants.
    Kajiya K; Inaki K; Tanaka M; Haga T; Kataoka H; Touhara K
    J Neurosci; 2001 Aug; 21(16):6018-25. PubMed ID: 11487625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of odor coding in the Drosophila antenna.
    Hallem EA; Ho MG; Carlson JR
    Cell; 2004 Jun; 117(7):965-79. PubMed ID: 15210116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.