These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1025 related articles for article (PubMed ID: 27212425)

  • 1. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Gold and Silica Nanoparticle-Incorporated Hydrogel Scaffolds for Human Stem Cell-Derived Cardiac Tissue Engineering.
    Esmaeili H; Patino-Guerrero A; Nelson RA; Karamanova N; M Fisher T; Zhu W; Perreault F; Migrino RQ; Nikkhah M
    ACS Biomater Sci Eng; 2024 Apr; 10(4):2351-2366. PubMed ID: 38323834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro.
    Li XP; Qu KY; Zhang F; Jiang HN; Zhang N; Nihad C; Liu CM; Wu KH; Wang XW; Huang NP
    J Mater Chem B; 2020 Aug; 8(32):7213-7224. PubMed ID: 32638823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
    Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A
    Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues.
    Li XP; Qu KY; Zhou B; Zhang F; Wang YY; Abodunrin OD; Zhu Z; Huang NP
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111844. PubMed ID: 34015732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
    Shin SR; Jung SM; Zalabany M; Kim K; Zorlutuna P; Kim SB; Nikkhah M; Khabiry M; Azize M; Kong J; Wan KT; Palacios T; Dokmeci MR; Bae H; Tang XS; Khademhosseini A
    ACS Nano; 2013 Mar; 7(3):2369-80. PubMed ID: 23363247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering.
    Navaei A; Truong D; Heffernan J; Cutts J; Brafman D; Sirianni RW; Vernon B; Nikkhah M
    Acta Biomater; 2016 Mar; 32():10-23. PubMed ID: 26689467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues.
    Navaei A; Rahmani Eliato K; Ros R; Migrino RQ; Willis BC; Nikkhah M
    Biomater Sci; 2019 Jan; 7(2):585-595. PubMed ID: 30426116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering.
    Lee J; Manoharan V; Cheung L; Lee S; Cha BH; Newman P; Farzad R; Mehrotra S; Zhang K; Khan F; Ghaderi M; Lin YD; Aftab S; Mostafalu P; Miscuglio M; Li J; Mandal BB; Hussain MA; Wan KT; Tang XS; Khademhosseini A; Shin SR
    ACS Nano; 2019 Nov; 13(11):12525-12539. PubMed ID: 31621284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway.
    Sun H; Tang J; Mou Y; Zhou J; Qu L; Duval K; Huang Z; Lin N; Dai R; Liang C; Chen Z; Tang L; Tian F
    Acta Biomater; 2017 Jan; 48():88-99. PubMed ID: 27769942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour.
    Ahadian S; Banan Sadeghian R; Yaginuma S; Ramón-Azcón J; Nashimoto Y; Liang X; Bae H; Nakajima K; Shiku H; Matsue T; Nakayama KS; Khademhosseini A
    Biomater Sci; 2015 Nov; 3(11):1449-58. PubMed ID: 26343776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels.
    Wu Y; Chen YX; Yan J; Quinn D; Dong P; Sawyer SW; Soman P
    Acta Biomater; 2016 Mar; 33():122-30. PubMed ID: 26821341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting.
    Kiyotake EA; Thomas EE; Homburg HB; Milton CK; Smitherman AD; Donahue ND; Fung KM; Wilhelm S; Martin MD; Detamore MS
    J Biomed Mater Res A; 2022 Feb; 110(2):365-382. PubMed ID: 34390325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs.
    Schuurman W; Levett PA; Pot MW; van Weeren PR; Dhert WJ; Hutmacher DW; Melchels FP; Klein TJ; Malda J
    Macromol Biosci; 2013 May; 13(5):551-61. PubMed ID: 23420700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.