These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27212477)

  • 21. Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs.
    Garcia-Contreras L; Sung JC; Muttil P; Padilla D; Telko M; Verberkmoes JL; Elbert KJ; Hickey AJ; Edwards DA
    Antimicrob Agents Chemother; 2010 Apr; 54(4):1436-42. PubMed ID: 20086154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dry-Powder Inhaler Formulation of Rifampicin: An Improved Targeted Delivery System for Alveolar Tuberculosis.
    Rawal T; Kremer L; Halloum I; Butani S
    J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):388-398. PubMed ID: 28510480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethambutol-Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for Tuberculosis Therapy.
    Nemati E; Mokhtarzadeh A; Panahi-Azar V; Mohammadi A; Hamishehkar H; Mesgari-Abbasi M; Ezzati Nazhad Dolatabadi J; de la Guardia M
    AAPS PharmSciTech; 2019 Feb; 20(3):120. PubMed ID: 30796625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide.
    Qiu Y; Man RCH; Liao Q; Kung KLK; Chow MYT; Lam JKW
    J Control Release; 2019 Nov; 314():102-115. PubMed ID: 31629037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technological and practical challenges of dry powder inhalers and formulations.
    Hoppentocht M; Hagedoorn P; Frijlink HW; de Boer AH
    Adv Drug Deliv Rev; 2014 Aug; 75():18-31. PubMed ID: 24735675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis.
    Dharmadhikari AS; Kabadi M; Gerety B; Hickey AJ; Fourie PB; Nardell E
    Antimicrob Agents Chemother; 2013 Jun; 57(6):2613-9. PubMed ID: 23529740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dosing challenges in respiratory therapies.
    Yeung S; Traini D; Lewis D; Young PM
    Int J Pharm; 2018 Sep; 548(1):659-671. PubMed ID: 30033395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment.
    Parumasivam T; Chan JG; Pang A; Quan DH; Triccas JA; Britton WJ; Chan HK
    Eur J Pharm Biopharm; 2016 Oct; 107():205-14. PubMed ID: 27422209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics.
    Chan JG; Chan HK; Prestidge CA; Denman JA; Young PM; Traini D
    Eur J Pharm Biopharm; 2013 Feb; 83(2):285-92. PubMed ID: 22982733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powder, capsule and device: An imperative ménage à trois for respirable dry powders.
    Schoubben A; Blasi P; Giontella A; Giovagnoli S; Ricci M
    Int J Pharm; 2015 Oct; 494(1):40-8. PubMed ID: 26255220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formulation techniques for high dose dry powders.
    Brunaugh AD; Smyth HDC
    Int J Pharm; 2018 Aug; 547(1-2):489-498. PubMed ID: 29778822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research.
    Chan HW; Chow S; Zhang X; Zhao Y; Tong HHY; Chow SF
    AAPS PharmSciTech; 2023 Apr; 24(4):98. PubMed ID: 37016029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.
    Zhou QT; Leung SS; Tang P; Parumasivam T; Loh ZH; Chan HK
    Adv Drug Deliv Rev; 2015 May; 85():83-99. PubMed ID: 25451137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulmonary drug delivery by powder aerosols.
    Yang MY; Chan JG; Chan HK
    J Control Release; 2014 Nov; 193():228-40. PubMed ID: 24818765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation Design of Dry Powders for Inhalation.
    Weers JG; Miller DP
    J Pharm Sci; 2015 Oct; 104(10):3259-88. PubMed ID: 26296055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis.
    Eedara BB; Tucker IG; Das SC
    Int J Pharm; 2016 Jun; 506(1-2):174-83. PubMed ID: 27091294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antitubercular inhaled therapy: opportunities, progress and challenges.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2005 Apr; 55(4):430-5. PubMed ID: 15761077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Spray-Dried Combination of Capreomycin and CPZEN-45 for Inhaled Tuberculosis Therapy.
    Pitner RA; Durham PG; Stewart IE; Reed SG; Cassell GH; Hickey AJ; Carter D
    J Pharm Sci; 2019 Oct; 108(10):3302-3311. PubMed ID: 31152746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance.
    Ezzati Nazhad Dolatabadi J; Hamishehkar H; Valizadeh H
    Drug Dev Ind Pharm; 2015; 41(9):1431-7. PubMed ID: 25220930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.