These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27212929)

  • 1. A cascade model of information processing and encoding for retinal prosthesis.
    Pei ZJ; Gao GX; Hao B; Qiao QL; Ai HJ
    Neural Regen Res; 2016 Apr; 11(4):646-51. PubMed ID: 27212929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of a retinal layer model to generate a spike waveform for a color deficient and strabismus individual.
    Rajalakshmi T; Prince S
    Biomed Tech (Berl); 2019 May; 64(3):285-295. PubMed ID: 30055095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information transmission rates of cat retinal ganglion cells.
    Passaglia CL; Troy JB
    J Neurophysiol; 2004 Mar; 91(3):1217-29. PubMed ID: 14602836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells.
    Ryu SB; Ye JH; Kim CH; Goo YS; Kim KH
    Korean J Physiol Pharmacol; 2009 Jun; 13(3):221-7. PubMed ID: 19885041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Brain Res; 2010 Aug; 1348():71-83. PubMed ID: 20599822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons.
    Gabbiani F
    Network; 1996; 7(1):61-85. PubMed ID: 29480147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retina-Inspired Filter.
    Doutsi E; Fillatre L; Antonini M; Gaulmin J
    IEEE Trans Image Process; 2018 Jul; 27(7):3484-3499. PubMed ID: 29671748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding of temporal visual information from electrically evoked retinal ganglion cell activities in photoreceptor-degenerated retinas.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6271-8. PubMed ID: 21680865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Biologically-inspired Image Features to Model Retinal Response: Evidence from Biological Datasets.
    Melanitis N; Nakopoulos G; Lozano A; Soto-Sanchez C; Fernandez E; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3378-3381. PubMed ID: 34891964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Model for Low Variability in Neural Spike Trains.
    Ferrari U; Deny S; Marre O; Mora T
    Neural Comput; 2018 Nov; 30(11):3009-3036. PubMed ID: 30148708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme synergy: spatiotemporal correlations enable rapid image reconstruction from computer-generated spike trains.
    Kenyon GT
    J Vis; 2010 Mar; 10(3):21.1-27. PubMed ID: 20377298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information processing in the primate retina: circuitry and coding.
    Field GD; Chichilnisky EJ
    Annu Rev Neurosci; 2007; 30():1-30. PubMed ID: 17335403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels.
    Korenberg MJ; Sakai HM; Naka K
    J Neurophysiol; 1989 Jun; 61(6):1110-20. PubMed ID: 2746312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically-inspired image processing in computational retina models.
    Melanitis N; Nikita KS
    Comput Biol Med; 2019 Oct; 113():103399. PubMed ID: 31472425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning retina implants with epiretinal contacts.
    Eckmiller R
    Ophthalmic Res; 1997; 29(5):281-9. PubMed ID: 9323719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image processing for a high-resolution optoelectronic retinal prosthesis.
    Asher A; Segal WA; Baccus SA; Yaroslavsky LP; Palanker DV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):993-1004. PubMed ID: 17554819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable retina encoders for retina implants: why and how.
    Eckmiller R; Neumann D; Baruth O
    J Neural Eng; 2005 Mar; 2(1):S91-S104. PubMed ID: 15876659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. See globally, spike locally: oscillations in a retinal model encode large visual features.
    Stephens GJ; Neuenschwander S; George JS; Singer W; Kenyon GT
    Biol Cybern; 2006 Oct; 95(4):327-48. PubMed ID: 16897092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex spike-event pattern of transient ON-OFF retinal ganglion cells.
    Greschner M; Thiel A; Kretzberg J; Ammermüller J
    J Neurophysiol; 2006 Dec; 96(6):2845-56. PubMed ID: 16914608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.