BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27213223)

  • 1. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes.
    Wettstein C; Kano K; Schäfer D; Wollenberger U; Lisdat F
    Anal Chem; 2016 Jun; 88(12):6382-9. PubMed ID: 27213223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing.
    Damar K; Odaci Demirkol D
    Talanta; 2011 Dec; 87():67-73. PubMed ID: 22099650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically active silica nanoparticle-based supramolecular architectures of two proteins--cellobiose dehydrogenase and cytochrome C on electrodes.
    Feifel SC; Ludwig R; Gorton L; Lisdat F
    Langmuir; 2012 Jun; 28(25):9189-94. PubMed ID: 22663060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Chem; 2018 Oct; 90(20):12131-12136. PubMed ID: 30148350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes.
    Wettstein Ch; Möhwald H; Lisdat F
    Bioelectrochemistry; 2012 Dec; 88():97-102. PubMed ID: 22814119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes.
    Sarauli D; Ludwig R; Haltrich D; Gorton L; Lisdat F
    Bioelectrochemistry; 2012 Oct; 87():9-14. PubMed ID: 21849263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.
    Kawai S; Goda-Tsutsumi M; Yakushi T; Kano K; Matsushita K
    Appl Environ Microbiol; 2013 Mar; 79(5):1654-60. PubMed ID: 23275508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes.
    E Ferapontova E; Gorton L
    Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a κ-carrageenan-based electroactive cytochrome c multilayer thin film by an electrostatic layer-by-layer assembly.
    Temoçin Z
    Bioelectrochemistry; 2019 Oct; 129():34-41. PubMed ID: 31102940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability.
    Grippo V; Ma S; Ludwig R; Gorton L; Bilewicz R
    Bioelectrochemistry; 2019 Feb; 125():134-141. PubMed ID: 29128298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers.
    Feifel SC; Lisdat F
    J Nanobiotechnology; 2011 Dec; 9():59. PubMed ID: 22208693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.
    Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L
    Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural design of anthraquinone bridges in direct electron transfer of fructose dehydrogenase.
    Jansen CU; Yan X; Ulstrup J; Xiao X; Qvortrup K
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112941. PubMed ID: 36270138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reagentless biosensor of nitric oxide based on direct electron transfer process of cytochrome c on multi-walled carbon nanotube.
    Zhao GC; Yin ZZ; Wei XW
    Front Biosci; 2005 Sep; 10():2005-10. PubMed ID: 15970472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c.
    Chen XJ; West AC; Cropek DM; Banta S
    Anal Chem; 2008 Dec; 80(24):9622-9. PubMed ID: 19072268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity.
    Akshath US; Bhatt P
    Biosens Bioelectron; 2016 Nov; 85():240-246. PubMed ID: 27179565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethyleneimine as a promoter layer for the immobilization of cellobiose dehydrogenase from Myriococcum thermophilum on graphite electrodes.
    Schulz C; Ludwig R; Gorton L
    Anal Chem; 2014 May; 86(9):4256-63. PubMed ID: 24746119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.