BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27213242)

  • 1. Monosilicic acid potential in phytoremediation of the contaminated areas.
    Ji X; Liu S; Huang J; Bocharnikova E; Matichenkov V
    Chemosphere; 2016 Aug; 157():132-6. PubMed ID: 27213242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?
    Bolan N; Kunhikrishnan A; Thangarajan R; Kumpiene J; Park J; Makino T; Kirkham MB; Scheckel K
    J Hazard Mater; 2014 Feb; 266():141-66. PubMed ID: 24394669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.
    Rehman MZU; Rizwan M; Ali S; Ok YS; Ishaque W; Saifullah ; Nawaz MF; Akmal F; Waqar M
    Ecotoxicol Environ Saf; 2017 Sep; 143():236-248. PubMed ID: 28551581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives.
    Thakur S; Singh L; Wahid ZA; Siddiqui MF; Atnaw SM; Din MF
    Environ Monit Assess; 2016 Apr; 188(4):206. PubMed ID: 26940329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.
    Mahmood-Ul-Hassan M; Suthar V; Ahmad R; Yousra M
    Environ Monit Assess; 2017 Oct; 189(11):591. PubMed ID: 29086096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review.
    Dhaliwal SS; Singh J; Taneja PK; Mandal A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1319-1333. PubMed ID: 31808078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals.
    Cameselle C; Gouveia S; Urréjola S
    Chemosphere; 2019 Aug; 229():481-488. PubMed ID: 31091489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF; Ngwa ES; Chikoye D; Suh CE
    Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.
    Ullah A; Mushtaq H; Ali H; Munis MF; Javed MT; Chaudhary HJ
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2505-14. PubMed ID: 25339525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects.
    Jaskulak M; Grobelak A; Vandenbulcke F
    Chemosphere; 2020 Jun; 249():126196. PubMed ID: 32088456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.