These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27213278)

  • 1. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.
    Dugan A; Pricer R; Katz M; Mapp AK
    Protein Sci; 2016 Aug; 25(8):1371-7. PubMed ID: 27213278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3.
    Mohibullah N; Hahn S
    Genes Dev; 2008 Nov; 22(21):2994-3006. PubMed ID: 18981477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.
    Krishnamurthy M; Dugan A; Nwokoye A; Fung YH; Lancia JK; Majmudar CY; Mapp AK
    ACS Chem Biol; 2011 Dec; 6(12):1321-6. PubMed ID: 21977905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional activator GAL4-VP16 regulates the intra-molecular interactions of the TATA-binding protein.
    Mishra AK; Vanathi P; Bhargava P
    J Biosci; 2003 Jun; 28(4):423-36. PubMed ID: 12799489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Topoisomerases Are Required for Preinitiation Complex Assembly during GAL Gene Activation.
    Roedgaard M; Fredsoe J; Pedersen JM; Bjergbaek L; Andersen AH
    PLoS One; 2015; 10(7):e0132739. PubMed ID: 26173127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo.
    Hall DB; Struhl K
    J Biol Chem; 2002 Nov; 277(48):46043-50. PubMed ID: 12297514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of in vitro interactions implicates TATA-binding protein as a target of the VP16C transcriptional activation region.
    Nedialkov YA; Triezenberg SJ
    Arch Biochem Biophys; 2004 May; 425(1):77-86. PubMed ID: 15081896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation by DNA-binding derivatives of HSV-1 VP16 that lack the carboxyl-terminal acidic activation domain.
    Popova B; Bilan P; Xiao P; Faught M; Capone JP
    Virology; 1995 May; 209(1):19-28. PubMed ID: 7747469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast.
    Stafford GA; Morse RH
    Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of Enzymatic Targets of Transcriptional Activators via in Vivo Covalent Chemical Capture.
    Dugan A; Majmudar CY; Pricer R; Niessen S; Lancia JK; Fung HY; Cravatt BF; Mapp AK
    J Am Chem Soc; 2016 Sep; 138(38):12629-35. PubMed ID: 27611834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter.
    Shimizu M; Takahashi K; Lamb TM; Shindo H; Mitchell AP
    Nucleic Acids Res; 2003 Jun; 31(12):3033-7. PubMed ID: 12799429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes.
    Utley RT; Ikeda K; Grant PA; Côté J; Steger DJ; Eberharter A; John S; Workman JL
    Nature; 1998 Jul; 394(6692):498-502. PubMed ID: 9697775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Bidirectional Gene Expression Control Using the Canonical GAL1/GAL10 Promoter.
    Elison GL; Xue Y; Song R; Acar M
    Cell Rep; 2018 Oct; 25(3):737-748.e4. PubMed ID: 30332652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes.
    Zhong P; Melcher K
    Biochem Biophys Res Commun; 2010 Jan; 392(1):77-82. PubMed ID: 20059977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gal11p dosage-compensates transcriptional activator deletions via Taf14p.
    Lim MK; Tang V; Le Saux A; Schüller J; Bongards C; Lehming N
    J Mol Biol; 2007 Nov; 374(1):9-23. PubMed ID: 17919657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription.
    Larschan E; Winston F
    Mol Cell Biol; 2005 Jan; 25(1):114-23. PubMed ID: 15601835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.