BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27213330)

  • 1. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.
    Montiel J; Arthikala MK; Cárdenas L; Quinto C
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris).
    Fonseca-García C; Nava N; Lara M; Quinto C
    BMC Plant Biol; 2021 Jun; 21(1):274. PubMed ID: 34130630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia.
    Montiel J; Nava N; Cárdenas L; Sánchez-López R; Arthikala MK; Santana O; Sánchez F; Quinto C
    Plant Cell Physiol; 2012 Oct; 53(10):1751-67. PubMed ID: 22942250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization.
    Arthikala MK; Sánchez-López R; Nava N; Santana O; Cárdenas L; Quinto C
    New Phytol; 2014 May; 202(3):886-900. PubMed ID: 24571730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation.
    Fonseca-García C; Zayas AE; Montiel J; Nava N; Sánchez F; Quinto C
    BMC Genomics; 2019 Nov; 20(1):800. PubMed ID: 31684871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormone modulation of legume-rhizobial symbiosis.
    Liu H; Zhang C; Yang J; Yu N; Wang E
    J Integr Plant Biol; 2018 Aug; 60(8):632-648. PubMed ID: 29578639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of legume nodulation by acidic growth conditions.
    Ferguson BJ; Lin MH; Gresshoff PM
    Plant Signal Behav; 2013 Mar; 8(3):e23426. PubMed ID: 23333963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis.
    Hoang NT; Tóth K; Stacey G
    J Exp Bot; 2020 Mar; 71(5):1668-1680. PubMed ID: 32163588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H
    Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormone regulation of legume-rhizobia interactions.
    Ferguson BJ; Mathesius U
    J Chem Ecol; 2014 Jul; 40(7):770-90. PubMed ID: 25052910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses.
    Alemneh AA; Zhou Y; Ryder MH; Denton MD
    J Appl Microbiol; 2020 Nov; 129(5):1133-1156. PubMed ID: 32592603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis.
    Lohar DP; Haridas S; Gantt JS; VandenBosch KA
    New Phytol; 2007; 173(1):39-49. PubMed ID: 17176392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Minimal Genetic Passkey to Unlock Many Legume Doors to Root Nodulation by Rhizobia.
    Unay J; Perret X
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32392829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.].
    Glyan'ko AK; Ischenko AA
    Prikl Biokhim Mikrobiol; 2017; 53(2):136-45. PubMed ID: 29508970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes.
    Gage DJ
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):280-300. PubMed ID: 15187185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timely symbiosis: circadian control of legume-rhizobia symbiosis.
    Rowson M; Jolly M; Dickson S; Gifford ML; Carré I
    Biochem Soc Trans; 2024 Jun; 52(3):1419-1430. PubMed ID: 38779952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Legumes versus rhizobia: a model for ongoing conflict in symbiosis.
    Sachs JL; Quides KW; Wendlandt CE
    New Phytol; 2018 Sep; 219(4):1199-1206. PubMed ID: 29845625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions?
    Robert G; Muñoz N; Alvarado-Affantranger X; Saavedra L; Davidenco V; Rodríguez-Kessler M; Estrada-Navarrete G; Sánchez F; Lascano R
    J Exp Bot; 2018 Apr; 69(8):2037-2048. PubMed ID: 29394394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organogenesis of legume root nodules.
    Patriarca EJ; Tatè R; Ferraioli S; Iaccarino M
    Int Rev Cytol; 2004; 234():201-62. PubMed ID: 15066376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean.
    He C; Gao H; Wang H; Guo Y; He M; Peng Y; Wang X
    Mol Plant; 2021 Mar; 14(3):488-502. PubMed ID: 33359013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.