These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1175 related articles for article (PubMed ID: 27213337)
1. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY; You ZH; Meng FR; Xu SJ; Wang Y Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337 [TBL] [Abstract][Full Text] [Related]
2. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983 [TBL] [Abstract][Full Text] [Related]
3. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences. An JY; Meng FR; You ZH; Fang YH; Zhao YJ; Zhang M Biomed Res Int; 2016; 2016():4783801. PubMed ID: 27314023 [TBL] [Abstract][Full Text] [Related]
4. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC. Zhai JX; Cao TJ; An JY; Bian YT J Theor Biol; 2017 Nov; 432():80-86. PubMed ID: 28802824 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
6. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483 [TBL] [Abstract][Full Text] [Related]
7. Detection of Interactions between Proteins by Using Legendre Moments Descriptor to Extract Discriminatory Information Embedded in PSSM. Wang YB; You ZH; Li LP; Huang YA; Yi HC Molecules; 2017 Aug; 22(8):. PubMed ID: 28820478 [TBL] [Abstract][Full Text] [Related]
8. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. Wang L; You ZH; Xia SX; Liu F; Chen X; Yan X; Zhou Y J Theor Biol; 2017 Apr; 418():105-110. PubMed ID: 28088356 [TBL] [Abstract][Full Text] [Related]
9. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation. Li Y; Wang Z; You ZH; Li LP; Hu X Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211 [TBL] [Abstract][Full Text] [Related]
10. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. Huang YA; You ZH; Chen X; Yan GY BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718 [TBL] [Abstract][Full Text] [Related]
11. Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Wang YB; You ZH; Li X; Jiang TH; Chen X; Zhou X; Wang L Mol Biosyst; 2017 Jun; 13(7):1336-1344. PubMed ID: 28604872 [TBL] [Abstract][Full Text] [Related]
12. Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. Huang YA; You ZH; Chen X; Chan K; Luo X BMC Bioinformatics; 2016 Apr; 17(1):184. PubMed ID: 27112932 [TBL] [Abstract][Full Text] [Related]
13. Using discriminative vector machine model with 2DPCA to predict interactions among proteins. Li Z; Nie R; You Z; Cao C; Li J BMC Bioinformatics; 2019 Dec; 20(Suppl 25):694. PubMed ID: 31874626 [TBL] [Abstract][Full Text] [Related]
14. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. You ZH; Chan KC; Hu P PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106 [TBL] [Abstract][Full Text] [Related]
15. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information. Li J; Shi X; You ZH; Yi HC; Chen Z; Lin Q; Fang M IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1546-1554. PubMed ID: 31940546 [TBL] [Abstract][Full Text] [Related]
16. Predicting protein-protein interactions from protein sequences using meta predictor. Xia JF; Zhao XM; Huang DS Amino Acids; 2010 Nov; 39(5):1595-9. PubMed ID: 20386937 [TBL] [Abstract][Full Text] [Related]
17. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121 [TBL] [Abstract][Full Text] [Related]
18. Predicting Protein-Protein Interactions from Matrix-Based Protein Sequence Using Convolution Neural Network and Feature-Selective Rotation Forest. Wang L; Wang HF; Liu SR; Yan X; Song KJ Sci Rep; 2019 Jul; 9(1):9848. PubMed ID: 31285519 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. You ZH; Zhu L; Zheng CH; Yu HJ; Deng SP; Ji Z BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S9. PubMed ID: 25474679 [TBL] [Abstract][Full Text] [Related]
20. An ensemble approach for large-scale identification of protein- protein interactions using the alignments of multiple sequences. Wang L; You ZH; Chen X; Li JQ; Yan X; Zhang W; Huang YA Oncotarget; 2017 Jan; 8(3):5149-5159. PubMed ID: 28029645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]