These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27213346)

  • 1. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.
    Zhang D; Zhu Y; Pedrycz W; Guo Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.
    Zheng Q; Xiong L; Mo B; Lu W; Kim S; Wang Z
    Sensors (Basel); 2015 Sep; 15(9):23126-44. PubMed ID: 26378546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of municipal waste compost on microbial biodiversity and energy production in terrestrial microbial fuel cells.
    Garbini GL; Barra Caracciolo A; Rolando L; Visca A; Borello D; Cosentini C; Gagliardi G; Ieropoulos I; Grenni P
    N Biotechnol; 2023 Dec; 78():131-140. PubMed ID: 37875210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.
    Erbay C; Carreon-Bautista S; Sanchez-Sinencio E; Han A
    Environ Sci Technol; 2014 Dec; 48(23):13992-9. PubMed ID: 25365216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale microbial fuel cells: Advances and challenges.
    Choi S
    Biosens Bioelectron; 2015 Jul; 69():8-25. PubMed ID: 25703724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrilotriacetic acid degradation under microbial fuel cell environment.
    Jang JK; Chang IS; Moon H; Kang KH; Kim BH
    Biotechnol Bioeng; 2006 Nov; 95(4):772-4. PubMed ID: 16958138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of power generation in microbial fuel cells of two different structures].
    Luo HP; Liu GL; Zhang RD; Jin S
    Huan Jing Ke Xue; 2009 Feb; 30(2):621-4. PubMed ID: 19402526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
    Srbinovski B; Magno M; Edwards-Murphy F; Pakrashi V; Popovici E
    Sensors (Basel); 2016 Mar; 16(4):448. PubMed ID: 27043559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length.
    Ren H; Torres CI; Parameswaran P; Rittmann BE; Chae J
    Biosens Bioelectron; 2014 Nov; 61():587-92. PubMed ID: 24956566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks.
    Yang L; Lu Y; Zhong Y; Wu X; Yang SX
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation.
    Chong PL; Singh AK; Kok SL
    PLoS One; 2019; 14(12):e0227153. PubMed ID: 31881078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions.
    Vologni V; Kakarla R; Angelidaki I; Min B
    Bioprocess Biosyst Eng; 2013 May; 36(5):635-42. PubMed ID: 23420478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature microbial solar cells to power wireless sensor networks.
    Liu L; Choi S
    Biosens Bioelectron; 2021 Apr; 177():112970. PubMed ID: 33429201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
    Vimalarani C; Subramanian R; Sivanandam SN
    ScientificWorldJournal; 2016; 2016():8658760. PubMed ID: 26881273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review.
    Tang X; Wang X; Cattley R; Gu F; Ball AD
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.