These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27213617)

  • 1. Systematic Construction and Calculation of Electronic Properties of Fullerene Series Related by Rotational Symmetry: From Fullerenes to Bicapped Nanotubes.
    Dias JR
    J Phys Chem A; 2016 Jun; 120(22):3975-82. PubMed ID: 27213617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AROFRAG─A Systematic Approach for Fragmentation of Aromatic Molecules.
    Masoumifeshani E; Korona T
    J Chem Theory Comput; 2024 Feb; 20(3):1078-1095. PubMed ID: 38252847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cytotoxicity of fullerene (60), carbon nanotube, and their derivatives in V79 cells and cultured normal human astrocytes].
    Yamada T; Jung YS; Tsuchiya T; Matsuoka A
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2009; (127):39-43. PubMed ID: 20306705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes.
    Vizuete M; Barrejón M; Gómez-Escalonilla MJ; Langa F
    Nanoscale; 2012 Aug; 4(15):4370-81. PubMed ID: 22706450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes.
    Lu X; Chen Z
    Chem Rev; 2005 Oct; 105(10):3643-96. PubMed ID: 16218563
    [No Abstract]   [Full Text] [Related]  

  • 6. Fullerene and nanotube growth: new insights using first principles and molecular dynamics.
    Cruz-Silva R; Araki T; Hayashi T; Terrones H; Terrones M; Endo M
    Philos Trans A Math Phys Eng Sci; 2016 Sep; 374(2076):. PubMed ID: 27501974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferable orientation of spherical fullerene inside boron nitride nanotubes.
    Ma F; Yao Z; Yao M; Liu R; Zou B; Cui T; Liu B
    J Phys Condens Matter; 2013 Feb; 25(6):065402. PubMed ID: 23334189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the molecular behaviors of fullerene derivatives C50X2 (X = H, F, Cl, Br, OH) to the general parallels among isostructural derivatives of fullerenes and carbon nanotubes.
    Xu X; Shang Z; Li R; Cai Z; Zhao X
    Phys Chem Chem Phys; 2009 Oct; 11(38):8560-9. PubMed ID: 19774288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computations of model narrow nanotubes closed by fragments of smaller fullerenes and quasi-fullerenes.
    Slanina Z; Uhlík F; Adamowicz L
    J Mol Graph Model; 2003 Jun; 21(6):517-22. PubMed ID: 12676238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic nanotubes and fullerene-like nanoparticles.
    Tenne R
    Nat Nanotechnol; 2006 Nov; 1(2):103-11. PubMed ID: 18654160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered fullerene nanocylinders in large-diameter carbon nanotubes.
    Yamazaki T; Kuramochi K; Takagi D; Homma Y; Nishimura F; Hori N; Watanabe K; Suzuki S; Kobayashi Y
    Nanotechnology; 2008 Jan; 19(4):045702. PubMed ID: 21817519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C70, C80, C90 and carbon nanotubes by breaking of the icosahedral symmetry of C60.
    Bodner M; Patera J; Szajewska M
    Acta Crystallogr A; 2013 Nov; 69(Pt 6):583-91. PubMed ID: 24132219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor.
    Barberis A; Spissu Y; Fadda A; Azara E; Bazzu G; Marceddu S; Angioni A; Sanna D; Schirra M; Serra PA
    Biosens Bioelectron; 2015 May; 67():214-23. PubMed ID: 25155059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the inner environment of carbon nanotubes with a fullerene-nitroxide probe.
    Campestrini S; Corvaja C; De Nardi M; Ducati C; Franco L; Maggini M; Meneghetti M; Menna E; Ruaro G
    Small; 2008 Mar; 4(3):350-6. PubMed ID: 18228238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.
    Yumura T; Kertesz M; Iijima S
    J Phys Chem B; 2007 Feb; 111(5):1099-109. PubMed ID: 17266263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the cage size on the dynamic behavior of fullerenes: a study of (13)c NMR spin-lattice relaxation.
    Klod S; Dunsch L
    ACS Nano; 2010 Jun; 4(6):3236-40. PubMed ID: 20459113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical and electronic rules in fullerene-based compounds.
    Gan LH; An J; Pan FS; Chang Q; Liu ZH; Tao CY
    Chem Asian J; 2011 Jun; 6(6):1304-14. PubMed ID: 21480535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.