These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27213810)

  • 1. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
    Tully PJ; Lindén H; Hennig MH; Lansner A
    PLoS Comput Biol; 2016 May; 12(5):e1004954. PubMed ID: 27213810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic associative learning suffices for learning the temporal structure of multiple sequences.
    Martinez RH; Lansner A; Herman P
    PLoS One; 2019; 14(8):e0220161. PubMed ID: 31369571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence learning, prediction, and replay in networks of spiking neurons.
    Bouhadjar Y; Wouters DJ; Diesmann M; Tetzlaff T
    PLoS Comput Biol; 2022 Jun; 18(6):e1010233. PubMed ID: 35727857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent Hebbian plasticity as temporal difference learning.
    Rao RP; Sejnowski TJ
    Neural Comput; 2001 Oct; 13(10):2221-37. PubMed ID: 11570997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing double bouquet cells into a modular cortical associative memory model.
    Chrysanthidis N; Fiebig F; Lansner A
    J Comput Neurosci; 2019 Dec; 47(2-3):223-230. PubMed ID: 31502234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network.
    Cone I; Shouval HZ
    Elife; 2021 Mar; 10():. PubMed ID: 33734085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic self-organization of spatio-temporal pattern selectivity.
    Dehghani-Habibabadi M; Pawelzik K
    PLoS Comput Biol; 2023 Feb; 19(2):e1010876. PubMed ID: 36780564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Convallis rule for unsupervised learning in cortical networks.
    Yger P; Harris KD
    PLoS Comput Biol; 2013 Oct; 9(10):e1003272. PubMed ID: 24204224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hebbian learning in parallel and modular memories.
    Poon CS; Shah JV
    Biol Cybern; 1998 Feb; 78(2):79-86. PubMed ID: 9525034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.
    Deger M; Seeholzer A; Gerstner W
    Cereb Cortex; 2018 Apr; 28(4):1396-1415. PubMed ID: 29300903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses.
    Del Giudice P; Fusi S; Mattia M
    J Physiol Paris; 2003; 97(4-6):659-81. PubMed ID: 15242673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons.
    Huyck CR; Vergani AA
    J Comput Neurosci; 2020 Aug; 48(3):299-316. PubMed ID: 32715350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent cortical circuit dynamics contain dense, interwoven ensembles of spike sequences.
    Dechery JB; MacLean JN
    J Neurophysiol; 2017 Sep; 118(3):1914-1925. PubMed ID: 28724786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.