These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27213829)
1. A Thiamine-Dependent Enzyme Utilizes an Active Tetrahedral Intermediate in Vitamin K Biosynthesis. Song H; Dong C; Qin M; Chen Y; Sun Y; Liu J; Chan W; Guo Z J Am Chem Soc; 2016 Jun; 138(23):7244-7. PubMed ID: 27213829 [TBL] [Abstract][Full Text] [Related]
2. Two active site arginines are critical determinants of substrate binding and catalysis in MenD: a thiamine-dependent enzyme in menaquinone biosynthesis. Qin M; Song H; Dai X; Chen Y; Guo Z Biochem J; 2018 Nov; 475(22):3651-3667. PubMed ID: 30341164 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional analysis of Vitamin K2 synthesis protein MenD. Priyadarshi A; Kim EE; Hwang KY Biochem Biophys Res Commun; 2009 Oct; 388(4):748-51. PubMed ID: 19703421 [TBL] [Abstract][Full Text] [Related]
4. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli. Beigi M; Waltzer S; Zarei M; Müller M J Biotechnol; 2014 Dec; 191():64-8. PubMed ID: 25111035 [TBL] [Abstract][Full Text] [Related]
5. Single-Turnover Kinetics Reveal a Distinct Mode of Thiamine Diphosphate-Dependent Catalysis in Vitamin K Biosynthesis. Qin M; Song H; Dai X; Chan CK; Chan W; Guo Z Chembiochem; 2018 Jul; 19(14):1514-1522. PubMed ID: 29726079 [TBL] [Abstract][Full Text] [Related]
6. Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). Dawson A; Fyfe PK; Hunter WN J Mol Biol; 2008 Dec; 384(5):1353-68. PubMed ID: 18983854 [TBL] [Abstract][Full Text] [Related]
7. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography. Wille G; Meyer D; Steinmetz A; Hinze E; Golbik R; Tittmann K Nat Chem Biol; 2006 Jun; 2(6):324-8. PubMed ID: 16680160 [TBL] [Abstract][Full Text] [Related]
8. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755 [TBL] [Abstract][Full Text] [Related]
9. The reaction of dimethyltin(IV) dichloride with thiamine diphosphate (H2TDP): synthesis and structure of [SnMe2(HTDP)(H2O)]Cl.H2O, and possibility of a hitherto unsuspected role of the metal cofactor in the mechanism of vitamin-B1-dependent enzymes. Casas JS; Castellano EE; Couce MD; Ellena J; Sánchez A; Sánchez JL; Sordo J; Taboada C Inorg Chem; 2004 Mar; 43(6):1957-63. PubMed ID: 15018516 [TBL] [Abstract][Full Text] [Related]
10. The structures of pyruvate oxidase from Aerococcus viridans with cofactors and with a reaction intermediate reveal the flexibility of the active-site tunnel for catalysis. Juan EC; Hoque MM; Hossain MT; Yamamoto T; Imamura S; Suzuki K; Sekiguchi T; Takénaka A Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Nov; 63(Pt 11):900-7. PubMed ID: 18007037 [TBL] [Abstract][Full Text] [Related]
11. Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin. Meyer D; Neumann P; Koers E; Sjuts H; Lüdtke S; Sheldrick GM; Ficner R; Tittmann K Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10867-72. PubMed ID: 22730460 [TBL] [Abstract][Full Text] [Related]
15. The 1',4'-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes. Nemeria N; Chakraborty S; Baykal A; Korotchkina LG; Patel MS; Jordan F Proc Natl Acad Sci U S A; 2007 Jan; 104(1):78-82. PubMed ID: 17182735 [TBL] [Abstract][Full Text] [Related]
16. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme. Nemeria N; Baykal A; Joseph E; Zhang S; Yan Y; Furey W; Jordan F Biochemistry; 2004 Jun; 43(21):6565-75. PubMed ID: 15157089 [TBL] [Abstract][Full Text] [Related]
17. Practical tethering of vitamin B1 on a silica surface via its phosphate group and evaluation of its activity. Vartzouma Ch; Louloudi M; Butler IS; Hadjiliadis N Chem Commun (Camb); 2002 Mar; (5):522-3. PubMed ID: 12120571 [TBL] [Abstract][Full Text] [Related]
18. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate. Cavazza C; Contreras-Martel C; Pieulle L; Chabrière E; Hatchikian EC; Fontecilla-Camps JC Structure; 2006 Feb; 14(2):217-24. PubMed ID: 16472741 [TBL] [Abstract][Full Text] [Related]
19. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase. Chakraborty S; Nemeria NS; Balakrishnan A; Brandt GS; Kneen MM; Yep A; McLeish MJ; Kenyon GL; Petsko GA; Ringe D; Jordan F Biochemistry; 2009 Feb; 48(5):981-94. PubMed ID: 19140682 [TBL] [Abstract][Full Text] [Related]
20. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase. Bhasin M; Billinsky JL; Palmer DR Biochemistry; 2003 Nov; 42(46):13496-504. PubMed ID: 14621995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]