BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27213915)

  • 1. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater.
    Boudot C; Boccoz A; Düregger K; Kuhnla A
    J Biomed Mater Res A; 2016 Oct; 104(10):2430-40. PubMed ID: 27213915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategy for the hemocompatibility testing of microparticles.
    Braune S; Basu S; Kratz K; Johansson JB; Reinthaler M; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2016; 64(3):345-353. PubMed ID: 27886001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimal incubation time for in vitro hemocompatibility testing: Assessment using polymer reference materials under pulsatile flow with physiological wall shear stress conditions.
    Blok SLJ; van Oeveren W; Engels GE
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2335-2342. PubMed ID: 30697956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A feasibility study on use of surface and interface properties for evaluating hemocompatibility of carbonaceous biomaterials].
    Li B; Kang A; Yin G; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Jun; 22(3):452-5. PubMed ID: 16013234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of novel blood incubation systems for in vitro hemocompatibility assessment of planar solid surfaces.
    Streller U; Sperling C; Hübner J; Hanke R; Werner C
    J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):379-90. PubMed ID: 12808598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol).
    Braune S; von Ruesten-Lange M; Mrowietz C; Lützow K; Roch T; Neffe AT; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2013 Jan; 54(3):235-48. PubMed ID: 23603330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts.
    Losi P; Lombardi S; Briganti E; Soldani G
    Biomaterials; 2004 Aug; 25(18):4447-55. PubMed ID: 15046935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Visualization of Platelet Interaction With Micro Structured Surfaces.
    Gester K; Birtel S; Clauser J; Steinseifer U; Sonntag SJ
    Artif Organs; 2016 Feb; 40(2):201-7. PubMed ID: 26156134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment.
    Braune S; Zhou S; Groth B; Jung F
    Clin Hemorheol Microcirc; 2015; 61(2):225-36. PubMed ID: 26410874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of platelet/biomaterial interactions in an epifluorescent video microscopy combined with a parallel plate flow cell.
    Kawagoishi N; Nojiri C; Senshu K; Kido T; Nagai H; Kanamori T; Sakai K; Koyanagi H; Akutsu T
    Artif Organs; 1994 Aug; 18(8):588-95. PubMed ID: 7993194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: blood compatibility and chemical stability assessments.
    Xie X; Wang R; Li J; Luo L; Wen D; Zhong Y; Zhao C
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):223-41. PubMed ID: 18837450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings.
    Skoog SA; Lu Q; Malinauskas RA; Sumant AV; Zheng J; Goering PL; Narayan RJ; Casey BJ
    J Biomed Mater Res A; 2017 Jan; 105(1):253-264. PubMed ID: 27543370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new dynamic method for quantitative evaluation of in vitro hemocompatibility of biomedical materials.
    Groth T; Vassilieff C; Wolf H; Richter G; Foerster F
    J Biomater Sci Polym Ed; 1992; 3(4):285-300. PubMed ID: 1596475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on platelet adherence.
    Braune S; Fröhlich GM; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2016; 61(4):681-8. PubMed ID: 26639771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cone-and-plate device for the investigation of platelet biomaterial interactions.
    Skarja GA; Kinlough-Rathbone RL; Perry DW; Rubens FD; Brash JL
    J Biomed Mater Res; 1997 Mar; 34(4):427-38. PubMed ID: 9054527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.
    Cai X; Yuan J; Chen S; Li P; Li L; Shen J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():42-8. PubMed ID: 24433885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4.
    Seyfert UT; Biehl V; Schenk J
    Biomol Eng; 2002 Aug; 19(2-6):91-6. PubMed ID: 12202168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.