These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 27213977)
1. Effect of Ethephon as an Ethylene-Releasing Compound on the Metabolic Profile of Chlorella vulgaris. Kim SH; Lim SR; Hong SJ; Cho BK; Lee H; Lee CG; Choi HK J Agric Food Chem; 2016 Jun; 64(23):4807-16. PubMed ID: 27213977 [TBL] [Abstract][Full Text] [Related]
2. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843 [TBL] [Abstract][Full Text] [Related]
3. Alteration of metabolic profiles in Lemna paucicostata culture and enhanced production of GABA and ferulic acid by ethephon treatment. Kim E; Kim M; Choi HK PLoS One; 2020; 15(4):e0231652. PubMed ID: 32298342 [TBL] [Abstract][Full Text] [Related]
4. Preharvest application of ethephon and postharvest UV-B radiation improve quality traits of beetroot (Beta vulgaris L. ssp. vulgaris) as source of colourant. Barba-Espin G; Glied-Olsen S; Dzhanfezova T; Joernsgaard B; Lütken H; Müller R BMC Plant Biol; 2018 Dec; 18(1):316. PubMed ID: 30509181 [TBL] [Abstract][Full Text] [Related]
5. The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Khan NA; Mir MR; Nazar R; Singh S Plant Biol (Stuttg); 2008 Sep; 10(5):534-8. PubMed ID: 18761492 [TBL] [Abstract][Full Text] [Related]
6. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Liu T; Liu F; Wang C; Wang Z; Li Y Bioresour Technol; 2017 May; 232():44-52. PubMed ID: 28214444 [TBL] [Abstract][Full Text] [Related]
7. Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1. Jusoh M; Loh SH; Aziz A; Cha TS Appl Biochem Biotechnol; 2019 Jun; 188(2):450-459. PubMed ID: 30536033 [TBL] [Abstract][Full Text] [Related]
8. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid. Park JY; Choi SA; Jeong MJ; Nam B; Oh YK; Lee JS Bioresour Technol; 2014 Jun; 162():379-83. PubMed ID: 24785789 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea) cultivars that differ in photosynthetic capacity. Khan NA BMC Plant Biol; 2004 Dec; 4():21. PubMed ID: 15625009 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of Chlorella vulgaris in sludge extracts: Nutrient removal and algal utilization. Wang L; Addy M; Lu Q; Cobb K; Chen P; Chen X; Liu Y; Wang H; Ruan R Bioresour Technol; 2019 May; 280():505-510. PubMed ID: 30777700 [TBL] [Abstract][Full Text] [Related]
11. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
12. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality. Hussain J; Liu Y; Lopes WA; Druzian JI; Souza CO; Carvalho GC; Nascimento IA; Liao W Appl Biochem Biotechnol; 2015 Mar; 175(6):3048-57. PubMed ID: 25588528 [TBL] [Abstract][Full Text] [Related]
13. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479 [TBL] [Abstract][Full Text] [Related]
14. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Park JY; Oh YK; Lee JS; Lee K; Jeong MJ; Choi SA Bioresour Technol; 2014 Feb; 153():408-12. PubMed ID: 24393546 [TBL] [Abstract][Full Text] [Related]
15. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris]. Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272 [TBL] [Abstract][Full Text] [Related]
16. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904 [TBL] [Abstract][Full Text] [Related]
18. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effect of jasmonic acid and ethylene on epicotyl growth and bud induction in the maritime pine, Pinus pinaster Soland. in ait. Martin MT; Pedranzani H; García-Molinero P; Pando V; Sierra-de-Grado R Biocell; 2009 Dec; 33(3):141-8. PubMed ID: 20067029 [TBL] [Abstract][Full Text] [Related]
20. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]