BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27214)

  • 1. Interaction of fluorinated ether anesthetics with artificial membranes.
    Koehler KA; Jain MK; Stone EE; Fossel ET; Koehler LS
    Biochim Biophys Acta; 1978 Jun; 510(1):177-85. PubMed ID: 27214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potency of fluorinated ether anesthetics correlates with their 19F spin-spin relaxation times in brain tissue.
    Evers AS; Haycock JC; d'Avignon DA
    Biochem Biophys Res Commun; 1988 Mar; 151(3):1039-45. PubMed ID: 2895643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer.
    Shieh DD; Ueda I; Lin H; Eyring H
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3999-4002. PubMed ID: 1069285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of general anesthetics with phospholipid vesicles and biological membranes.
    Vanderkooi JM; Landesberg R; Selick H; McDonald GG
    Biochim Biophys Acta; 1977 Jan; 464(1):1-18. PubMed ID: 831785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partition equilibrium of inhalation anesthetics and alcohols between water and membranes of phospholipids with varying acyl chain-lengths.
    Kamaya H; Kaneshina S; Ueda I
    Biochim Biophys Acta; 1981 Aug; 646(1):135-42. PubMed ID: 7272298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular orientation of volatile anesthetics at the binding surface: 1H- and 19F-NMR studies of submolecular affinity.
    Yoshida T; Takahashi K; Ueda I
    Biochim Biophys Acta; 1989 Nov; 985(3):331-3. PubMed ID: 2804113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial preference of anesthetic action upon the phase transition of phospholipid bilayers and partition equilibrium of inhalation anesthetics between membrane and deuterium oxide.
    Yokono S; Shieh DD; Ueda I
    Biochim Biophys Acta; 1981 Jul; 645(2):237-42. PubMed ID: 6268156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anesthetics release unfreezable and bound water in partially hydrated phospholipid lamellar systems and elevate phase transition temperature.
    Ueda I; Tseng HS; Kaminoh Y; Ma SM; Kamaya H; Lin SH
    Mol Pharmacol; 1986 Jun; 29(6):582-8. PubMed ID: 3713702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron spin resonance studies with the volatile anesthetics on phospholipid model membranes.
    Trudell JR; Hubbell WL; Cohen EN
    Ann N Y Acad Sci; 1973 Dec; 222():530-8. PubMed ID: 4361867
    [No Abstract]   [Full Text] [Related]  

  • 11. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition.
    Tsai YS; Ma SM; Nishimura S; Ueda I
    Biochim Biophys Acta; 1990 Feb; 1022(2):245-50. PubMed ID: 2306457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 degrees C.
    Lerman J; Willis MM; Gregory GA; Eger EI
    Anesthesiology; 1983 Dec; 59(6):554-8. PubMed ID: 6418030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modulation of ion channels by the inhalation general anaesthetics. A1H-NMR investigation using unilamellar phospholipid membranes.
    Veiro JA; Hunt GR
    Chem Biol Interact; 1985; 54(3):337-48. PubMed ID: 2414019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anesthetic interaction with a model cell membrane: expansion, phase transition, and melting of the lecithin monolayer.
    Ueda I; Shieh DD; Eyring H
    Anesthesiology; 1974 Sep; 41(3):217-25. PubMed ID: 4152778
    [No Abstract]   [Full Text] [Related]  

  • 15. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance.
    Wyrwicz AM; Pszenny MH; Schofield JC; Tillman PC; Gordon RE; Martin PA
    Science; 1983 Oct; 222(4622):428-30. PubMed ID: 6623084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes.
    Mountcastle DB; Biltonen RL; Halsey MJ
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4906-10. PubMed ID: 283401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lack of hydrate formation at a temperature of 0 C of methoxyflurane, halothane, diethyl ether and fluroxene.
    Eger EI; Shargel RO
    Anesthesiology; 1969 Feb; 30(2):136-7. PubMed ID: 4387880
    [No Abstract]   [Full Text] [Related]  

  • 18. Pressure-anesthetic antagonism on the phase separation of non-ionic surfactant micelles.
    Kaneshina S; Ueda I; Kamaya H; Eyring H
    Biochim Biophys Acta; 1980 Dec; 603(2):237-44. PubMed ID: 7459351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of phase-transition temperature by anesthetics: nonzero solid membrane binding.
    Kaminoh Y; Tashiro C; Kamaya H; Ueda I
    Biochim Biophys Acta; 1988 Dec; 946(2):215-20. PubMed ID: 3207738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral diffusion, order parameter and phase transition in phospholipid bilayer membranes containing tocopheryl acetate.
    Schmidt D; Steffen H; Planta C
    Biochim Biophys Acta; 1976 Aug; 443(1):1-9. PubMed ID: 182260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.