These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27214588)

  • 1. Responses of the Acutely Injured Spinal Cord to Vibration that Simulates Transport in Helicopters or Mine-Resistant Ambush-Protected Vehicles.
    Streijger F; Lee JH; Manouchehri N; Melnyk AD; Chak J; Tigchelaar S; So K; Okon EB; Jiang S; Kinsler R; Barazanji K; Cripton PA; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2217-2226. PubMed ID: 27214588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of whole-body resonance vibration in a porcine model of spinal cord injury.
    Streijger F; Lee JH; Chak J; Dressler D; Manouchehri N; Okon EB; Anderson LM; Melnyk AD; Cripton PA; Kwon BK
    J Neurotrauma; 2015 Jun; 32(12):908-21. PubMed ID: 25567669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Evaluation of Magnesium Chloride within a Polyethylene Glycol Formulation in a Porcine Model of Acute Spinal Cord Injury.
    Streijger F; Lee JH; Manouchehri N; Okon EB; Tigchelaar S; Anderson LM; Dekaban GA; Rudko DA; Menon RS; Iaci JF; Button DC; Vecchione AM; Konovalov A; Sarmiere PD; Ung C; Caggiano AO; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2202-2216. PubMed ID: 27125815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel porcine model of traumatic thoracic spinal cord injury.
    Lee JH; Jones CF; Okon EB; Anderson L; Tigchelaar S; Kooner P; Godbey T; Chua B; Gray G; Hildebrandt R; Cripton P; Tetzlaff W; Kwon BK
    J Neurotrauma; 2013 Feb; 30(3):142-59. PubMed ID: 23316955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model.
    Streijger F; Kim KT; So K; Manouchehri N; Shortt K; Okon EB; Morrison C; Fong A; Gupta R; Allard Brown A; Tigchelaar S; Sun J; Liu E; Keung M; Daly CD; Cripton PA; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2021 Nov; 38(21):2937-2955. PubMed ID: 34011164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of IL-6 signaling by MR16-1 inhibits reduction of docosahexaenoic acid-containing phosphatidylcholine levels in a mouse model of spinal cord injury.
    Arima H; Hanada M; Hayasaka T; Masaki N; Omura T; Xu D; Hasegawa T; Togawa D; Yamato Y; Kobayashi S; Yasuda T; Matsuyama Y; Setou M
    Neuroscience; 2014 Jun; 269():1-10. PubMed ID: 24657456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotine attenuates morphological deficits in a contusion model of spinal cord injury.
    Ravikumar R; Fugaccia I; Scheff SW; Geddes JW; Srinivasan C; Toborek M
    J Neurotrauma; 2005 Feb; 22(2):240-51. PubMed ID: 15716630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury.
    Kim KT; Streijger F; So K; Manouchehri N; Shortt K; Okon EB; Tigchelaar S; Fong A; Morrison C; Keung M; Sun J; Liu E; Cripton PA; Kwon BK
    J Neurotrauma; 2019 Nov; 36(21):3005-3017. PubMed ID: 30816064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional recovery after experimental spinal cord compression and whole body vibration therapy requires a balanced revascularization of the injured site.
    Manthou M; Nohroudi K; Moscarino S; Rehberg F; Stein G; Jansen R; Abdulla D; Jaminet P; Semler O; Schoenau E; Angelov DN
    Restor Neurol Neurosci; 2015; 33(2):233-49. PubMed ID: 25503507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dichotomous Locomotor Recoveries Are Predicted by Acute Changes in Segmental Blood Flow after Thoracic Spinal Contusion Injuries in Pigs.
    Santamaria AJ; Benavides FD; Padgett KR; Guada LG; Nunez-Gomez Y; Solano JP; Guest JD
    J Neurotrauma; 2019 May; 36(9):1399-1415. PubMed ID: 30284945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The immunomodulator decoy receptor 3 improves locomotor functional recovery after spinal cord injury.
    Chiu CW; Huang WH; Lin SJ; Tsai MJ; Ma H; Hsieh SL; Cheng H
    J Neuroinflammation; 2016 Jun; 13(1):154. PubMed ID: 27316538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal Fluid Biomarkers To Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury.
    Kwon BK; Streijger F; Fallah N; Noonan VK; Bélanger LM; Ritchie L; Paquette SJ; Ailon T; Boyd MC; Street J; Fisher CG; Dvorak MF
    J Neurotrauma; 2017 Feb; 34(3):567-580. PubMed ID: 27349274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival Model of Thoracic Contusion Spinal Cord Injury in the Domestic Pig.
    Gayen CD; Bessen MA; Dorrian RM; Quarrington RD; Mulaibrahimovic A; Doig RLO; Freeman BJC; Leonard AV; Jones CF
    J Neurotrauma; 2023 May; 40(9-10):965-980. PubMed ID: 36200622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-body vibration improves functional recovery in spinal cord injured rats.
    Wirth F; Schempf G; Stein G; Wellmann K; Manthou M; Scholl C; Sidorenko M; Semler O; Eisel L; Harrach R; Angelova S; Jaminet P; Ankerne J; Ashrafi M; Ozsoy O; Ozsoy U; Schubert H; Abdulla D; Dunlop SA; Angelov DN; Irintchev A; Schönau E
    J Neurotrauma; 2013 Mar; 30(6):453-68. PubMed ID: 23157611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and distal responses to injury in the rapid functional recovery from spinal cord contusion in rat pups.
    Leung PY; Wrathall JR
    Exp Neurol; 2006 Nov; 202(1):225-37. PubMed ID: 16890223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.