These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27214651)

  • 1. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats.
    López-Dolado E; González-Mayorga A; Gutiérrez MC; Serrano MC
    Biomaterials; 2016 Aug; 99():72-81. PubMed ID: 27214651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats.
    Domínguez-Bajo A; González-Mayorga A; Guerrero CR; Palomares FJ; García R; López-Dolado E; Serrano MC
    Biomaterials; 2019 Feb; 192():461-474. PubMed ID: 30502723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord.
    López-Dolado E; González-Mayorga A; Portolés MT; Feito MJ; Ferrer ML; Del Monte F; Gutiérrez MC; Serrano MC
    Adv Healthc Mater; 2015 Aug; 4(12):1861-8. PubMed ID: 26115359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord.
    Domínguez-Bajo A; González-Mayorga A; López-Dolado E; Munuera C; García-Hernández M; Serrano MC
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2401-2414. PubMed ID: 33455347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection.
    Hejčl A; Růžička J; Proks V; Macková H; Kubinová Š; Tukmachev D; Cihlář J; Horák D; Jendelová P
    J Mater Sci Mater Med; 2018 Jun; 29(7):89. PubMed ID: 29938301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat.
    Hejcl A; Urdzikova L; Sedy J; Lesny P; Pradny M; Michalek J; Burian M; Hajek M; Zamecnik J; Jendelova P; Sykova E
    J Neurosurg Spine; 2008 Jan; 8(1):67-73. PubMed ID: 18173349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair.
    Zhang XY; Xue H; Liu JM; Chen D
    J Biomed Mater Res A; 2012 Mar; 100(3):578-87. PubMed ID: 22213649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide.
    Kanayama I; Miyaji H; Takita H; Nishida E; Tsuji M; Fugetsu B; Sun L; Inoue K; Ibara A; Akasaka T; Sugaya T; Kawanami M
    Int J Nanomedicine; 2014; 9():3363-73. PubMed ID: 25050063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
    Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S
    Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
    Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC
    J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI).
    Kim M; Park SR; Choi BH
    Histol Histopathol; 2014 Nov; 29(11):1395-408. PubMed ID: 24831814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury.
    Slotkin JR; Pritchard CD; Luque B; Ye J; Layer RT; Lawrence MS; O'Shea TM; Roy RR; Zhong H; Vollenweider I; Edgerton VR; Courtine G; Woodard EJ; Langer R
    Biomaterials; 2017 Apr; 123():63-76. PubMed ID: 28167393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord.
    Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA
    Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair.
    Xue H; Zhang XY; Liu JM; Song Y; Li YF; Chen D
    J Biomed Mater Res A; 2013 Jan; 101(1):145-56. PubMed ID: 22829497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury.
    Colello RJ; Chow WN; Bigbee JW; Lin C; Dalton D; Brown D; Jha BS; Mathern BE; Lee KD; Simpson DG
    J Tissue Eng Regen Med; 2016 Aug; 10(8):656-68. PubMed ID: 23950083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury.
    Hu Y; Zhang F; Zhong W; Liu Y; He Q; Yang M; Chen H; Xu X; Bian K; Xu J; Li J; Shen Y; Zhang H
    J Mater Chem B; 2019 Dec; 7(47):7525-7539. PubMed ID: 31720683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury.
    Koffler J; Samara RF; Rosenzweig ES
    Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.
    Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E
    Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.