These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27214911)

  • 1. A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations.
    Zhou L; Abraham AC; Tang SY; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1143-1151. PubMed ID: 27214911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linearization of CMOS Hot-Electron Injectors for Self-Powered Monitoring of Biomechanical Strain Variations.
    Zhou L; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):446-454. PubMed ID: 28113955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultra-linear piezo-floating-gate strain-gauge for self-powered measurement of quasi-static-strain.
    Sarkar P; Huang C; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):437-50. PubMed ID: 23893203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A piezo-powered floating-gate sensor array for long-term fatigue monitoring in biomechanical implants.
    Lajnef N; Elvin NG; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2008 Sep; 2(3):164-72. PubMed ID: 23852966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors.
    Borchani W; Aono K; Lajnef N; Chakrabartty S
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1463-72. PubMed ID: 26540667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.
    Feng T; Aono K; Covassin T; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):217-26. PubMed ID: 25838527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonically Powered Compact Implantable Dust for Optogenetics.
    Laursen K; Rashidi A; Hosseini S; Mondal T; Corbett B; Moradi F
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):583-594. PubMed ID: 32406843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring.
    Zhou Z; Warr PA
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1079-1086. PubMed ID: 27244748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sub-microwatt piezo-floating-gate sensor for long-term fatigue monitoring in biomechanical implants.
    Lajnef N; Chakrabartty S; Elvin N; Elvin A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5936-9. PubMed ID: 17946349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified theory of plasmon-induced resonance energy transfer and hot electron injection processes for enhanced photocurrent efficiency.
    You X; Ramakrishna S; Seideman T
    J Chem Phys; 2018 Nov; 149(17):174304. PubMed ID: 30408995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 30 $\mu\text{W}$ Remotely Powered Local Temperature Monitoring Implantable System.
    Ghanad MA; Green MM; Dehollain C
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):54-63. PubMed ID: 27514065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time reconfigurable subthreshold CMOS perceptron.
    Aunet S; Oelmann B; Norseng PA; Berg Y
    IEEE Trans Neural Netw; 2008 Apr; 19(4):645-57. PubMed ID: 18390310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Beam Shared-Inductor Reconfigurable Voltage/SECE Mode Piezoelectric Energy Harvesting Interface Circuit.
    Meng M; Wang D; Truong BD; Trolier-McKinstry S; Roundy S; Kiani M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1277-1287. PubMed ID: 31715569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations.
    Tsai TH; Tsai HC; Wu TK
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):608-16. PubMed ID: 25314707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor.
    Zhao Y; Deng P; Nie Y; Wang P; Zhang Y; Xing L; Xue X
    Biosens Bioelectron; 2014 Jul; 57():269-75. PubMed ID: 24594594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents.
    Din AU; Chandrathna SC; Lee JW
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28422085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-power circuits for the bidirectional wireless monitoring system of the orthopedic implants.
    Hong Chen ; Ming Liu ; Wenhan Hao ; Yi Chen ; Chen Jia ; Chun Zhang ; Zihua Wang
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):437-43. PubMed ID: 23853291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.