These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 27214912)
1. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets. Sengupta A; Shim Y; Roy K IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1152-1160. PubMed ID: 27214912 [TBL] [Abstract][Full Text] [Related]
2. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron. Zhang D; Zeng L; Cao K; Wang M; Peng S; Zhang Y; Zhang Y; Klein JO; Wang Y; Zhao W IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):828-36. PubMed ID: 27214913 [TBL] [Abstract][Full Text] [Related]
3. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Choi S; Yang J; Wang G Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204 [TBL] [Abstract][Full Text] [Related]
4. Magnetic skyrmion-based artificial neuron device. Li S; Kang W; Huang Y; Zhang X; Zhou Y; Zhao W Nanotechnology; 2017 Aug; 28(31):31LT01. PubMed ID: 28639562 [TBL] [Abstract][Full Text] [Related]
5. A compact skyrmionic leaky-integrate-fire spiking neuron device. Chen X; Kang W; Zhu D; Zhang X; Lei N; Zhang Y; Zhou Y; Zhao W Nanoscale; 2018 Mar; 10(13):6139-6146. PubMed ID: 29557440 [TBL] [Abstract][Full Text] [Related]
6. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284 [TBL] [Abstract][Full Text] [Related]
13. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning. Srinivasan G; Sengupta A; Roy K Sci Rep; 2016 Jul; 6():29545. PubMed ID: 27405788 [TBL] [Abstract][Full Text] [Related]
14. Neuromorphic computing with multi-memristive synapses. Boybat I; Le Gallo M; Nandakumar SR; Moraitis T; Parnell T; Tuma T; Rajendran B; Leblebici Y; Sebastian A; Eleftheriou E Nat Commun; 2018 Jun; 9(1):2514. PubMed ID: 29955057 [TBL] [Abstract][Full Text] [Related]
15. A Biological-Realtime Neuromorphic System in 28 nm CMOS Using Low-Leakage Switched Capacitor Circuits. Mayr C; Partzsch J; Noack M; Hänzsche S; Scholze S; Höppner S; Ellguth G; Schüffny R IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):243-54. PubMed ID: 25680215 [TBL] [Abstract][Full Text] [Related]
16. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601 [TBL] [Abstract][Full Text] [Related]
17. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546 [TBL] [Abstract][Full Text] [Related]
18. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing. Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623 [TBL] [Abstract][Full Text] [Related]
19. Emulation with Organic Memristive Devices of Impairment of LTP Mechanism in Neurodegenerative Disease Pathology. Battistoni S; Erokhin V; Iannotta S Neural Plast; 2017; 2017():6090312. PubMed ID: 28706739 [TBL] [Abstract][Full Text] [Related]
20. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device. Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]