These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27214923)

  • 1. Reference Adaptation for Robots in Physical Interactions With Unknown Environments.
    Wang C; Li Y; Ge SS; Lee TH
    IEEE Trans Cybern; 2017 Nov; 47(11):3504-3515. PubMed ID: 27214923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Networks Enhanced Adaptive Admittance Control of Optimized Robot-Environment Interaction.
    Yang C; Peng G; Li Y; Cui R; Cheng L; Li Z
    IEEE Trans Cybern; 2019 Jul; 49(7):2568-2579. PubMed ID: 29993904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning.
    Kong L; He W; Yang C; Li Z; Sun C
    IEEE Trans Cybern; 2019 Aug; 49(8):3052-3063. PubMed ID: 30843856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Admittance Control of Optimized Robot-Environment Interaction Using Reference Adaptation.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5804-5815. PubMed ID: 34982696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal critic learning for robot control in time-varying environments.
    Wang C; Li Y; Ge SS; Lee TH
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2301-10. PubMed ID: 25585427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable Impedance Control Based on Target Position and Tracking Error for Rehabilitation Robots During a Reaching Task.
    Tang R; Yang Q; Song R
    Front Neurorobot; 2022; 16():850692. PubMed ID: 35308312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial hybrid adaptive impedance learning control for robots in repetitive interactive tasks.
    Yang J; Sun T; Yang H
    ISA Trans; 2023 Jul; 138():151-159. PubMed ID: 36828703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous mode adaptation for cable-driven rehabilitation robot using reinforcement learning.
    Yang R; Zheng J; Song R
    Front Neurorobot; 2022; 16():1068706. PubMed ID: 36620486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Force Control Learning System for Industrial Robots Based on Variable Impedance Control.
    Li C; Zhang Z; Xia G; Xie X; Zhu Q
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.
    Juang CF; Lai MG; Zeng WT
    IEEE Trans Cybern; 2015 Sep; 45(9):1731-43. PubMed ID: 25398185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive dynamic feedback control of parallel robots with unknown kinematic and dynamic properties.
    Harandi MRJ; Khalilpour SA; Taghirad HD
    ISA Trans; 2022 Jul; 126():574-584. PubMed ID: 34481655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive Impedance Learning-Based Physically Human-Robot Interactive Control.
    Sun T; Yang J; Pan Y; Yu H
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10629-10638. PubMed ID: 37027552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error-Based Learning Mechanism for Fast Online Adaptation in Robot Motor Control.
    Thor M; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2042-2051. PubMed ID: 31395565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.
    Li Z; Ge SS; Liu S
    IEEE Trans Neural Netw Learn Syst; 2014 Aug; 25(8):1460-73. PubMed ID: 25050944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive robot climbing with magnetic feet in unknown slippery structure.
    Lee JE; Bandyopadhyay T; Sentis L
    Front Robot AI; 2022; 9():949460. PubMed ID: 36105762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network-based adaptive controller design of robotic manipulators with an observer.
    Sun F; Sun Z; Woo PY
    IEEE Trans Neural Netw; 2001; 12(1):54-67. PubMed ID: 18244363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.