BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27215184)

  • 1. KRas, ROS and the initiation of pancreatic cancer.
    Storz P
    Small GTPases; 2017 Jan; 8(1):38-42. PubMed ID: 27215184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting reactive oxygen species in development and progression of pancreatic cancer.
    Durand N; Storz P
    Expert Rev Anticancer Ther; 2017 Jan; 17(1):19-31. PubMed ID: 27841037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions.
    Liou GY; Döppler H; DelGiorno KE; Zhang L; Leitges M; Crawford HC; Murphy MP; Storz P
    Cell Rep; 2016 Mar; 14(10):2325-36. PubMed ID: 26947075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Reactive Oxygen Species by Fluorescent Probes in Pancreatic Cancer Cells.
    Luo Y; Wang D; Abbruzzese JL; Lu W
    Methods Mol Biol; 2019; 1882():207-219. PubMed ID: 30378057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of NEMO/IKKγ for effective expansion of KRAS-induced precancerous lesions in the pancreas.
    Maier HJ; Wagner M; Schips TG; Salem HH; Baumann B; Wirth T
    Oncogene; 2013 May; 32(21):2690-5. PubMed ID: 22751123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras.
    Lee JC; Shin J; Baek KH
    Biochem Biophys Res Commun; 2013 Oct; 440(1):50-5. PubMed ID: 24041692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KRAS G12D mutation eliminates reactive oxygen species through the Nrf2/CSE/H
    Fan K; Zhang S; Ni X; Shen S; Wang J; Sun W; Suo T; Liu H; Ni X; Liu H
    Acta Biochim Biophys Sin (Shanghai); 2022 Nov; 54(11):1731-1739. PubMed ID: 36514219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas.
    Al Saati T; Clerc P; Hanoun N; Peuget S; Lulka H; Gigoux V; Capilla F; Béluchon B; Couvelard A; Selves J; Buscail L; Carrier A; Dusetti N; Dufresne M
    Am J Pathol; 2013 Jun; 182(6):1996-2004. PubMed ID: 23578383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of oncogenic KRAS in pancreatic cancer (Review).
    Liu J; Ji S; Liang C; Qin Y; Jin K; Liang D; Xu W; Shi S; Zhang B; Liu L; Liu C; Xu J; Ni Q; Yu X
    Mol Med Rep; 2016 Jun; 13(6):4943-9. PubMed ID: 27121414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy.
    Ferino A; Rapozzi V; Xodo LE
    J Photochem Photobiol B; 2020 Jan; 202():111672. PubMed ID: 31778952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperglycemia enhances pancreatic cancer progression accompanied by elevations in phosphorylated STAT3 and MYC levels.
    Sato K; Hikita H; Myojin Y; Fukumoto K; Murai K; Sakane S; Tamura T; Yamai T; Nozaki Y; Yoshioka T; Kodama T; Shigekawa M; Sakamori R; Tatsumi T; Takehara T
    PLoS One; 2020; 15(7):e0235573. PubMed ID: 32609742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease.
    Aydin E; Hallner A; Grauers Wiktorin H; Staffas A; Hellstrand K; Martner A
    Oncogene; 2019 Feb; 38(9):1534-1543. PubMed ID: 30323311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
    Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E
    Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer.
    Kent OA; Sandí MJ; Burston HE; Brown KR; Rottapel R
    Oncotarget; 2017 Jan; 8(3):4484-4500. PubMed ID: 27835861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities.
    Bournet B; Buscail C; Muscari F; Cordelier P; Buscail L
    Eur J Cancer; 2016 Feb; 54():75-83. PubMed ID: 26735353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.
    Lubeseder-Martellato C; Alexandrow K; Hidalgo-Sastre A; Heid I; Boos SL; Briel T; Schmid RM; Siveke JT
    EBioMedicine; 2017 Feb; 15():90-99. PubMed ID: 28057438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS‑activated pancreatic cancer cells.
    Terado T; Kim CJ; Ushio A; Minami K; Tambe Y; Kageyama S; Kawauchi A; Tsunoda T; Shirasawa S; Tanaka H; Inoue H
    Int J Oncol; 2022 Sep; 61(3):. PubMed ID: 35894141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment.
    Dey P; Li J; Zhang J; Chaurasiya S; Strom A; Wang H; Liao WT; Cavallaro F; Denz P; Bernard V; Yen EY; Genovese G; Gulhati P; Liu J; Chakravarti D; Deng P; Zhang T; Carbone F; Chang Q; Ying H; Shang X; Spring DJ; Ghosh B; Putluri N; Maitra A; Wang YA; DePinho RA
    Cancer Discov; 2020 Apr; 10(4):608-625. PubMed ID: 32046984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.