BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27215197)

  • 1. RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli.
    Lee K; Park OS; Seo PJ
    Mol Cells; 2016 Jun; 39(6):484-94. PubMed ID: 27215197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis.
    Lee K; Park OS; Jung SJ; Seo PJ
    J Plant Physiol; 2016 Feb; 191():95-100. PubMed ID: 26724747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs.
    Xu K; Liu J; Fan M; Xin W; Hu Y; Xu C
    Genomics; 2012 Aug; 100(2):116-24. PubMed ID: 22664253
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Lee K; Park OS; Seo PJ
    Sci Signal; 2017 Nov; 10(507):. PubMed ID: 29184030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.
    He C; Chen X; Huang H; Xu L
    PLoS Genet; 2012 Aug; 8(8):e1002911. PubMed ID: 22927830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptome-based characterization of habituation in plant tissue culture.
    Pischke MS; Huttlin EL; Hegeman AD; Sussman MR
    Plant Physiol; 2006 Apr; 140(4):1255-78. PubMed ID: 16489130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana.
    Emami H; Kumar A; Kempken F
    BMC Plant Biol; 2020 May; 20(1):209. PubMed ID: 32397956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis.
    Bode R; Ivanov AG; Hüner NP
    Photosynth Res; 2016 Jun; 128(3):287-312. PubMed ID: 27021769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARABIDOPSIS TRITHORAX 4 Facilitates Shoot Identity Establishment during the Plant Regeneration Process.
    Lee K; Park OS; Choi CY; Seo PJ
    Plant Cell Physiol; 2019 Apr; 60(4):826-834. PubMed ID: 30605532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Identification of Arabidopsis LBD29 Target Genes Reveals the Molecular Events behind Auxin-Induced Cell Reprogramming during Callus Formation.
    Xu C; Cao H; Xu E; Zhang S; Hu Y
    Plant Cell Physiol; 2018 Apr; 59(4):744-755. PubMed ID: 29121271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis.
    Lee K; Seo PJ
    Planta; 2017 Oct; 246(4):797-802. PubMed ID: 28766014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome comparison between pluripotent and non-pluripotent calli derived from mature rice seeds.
    Shim S; Kim HK; Bae SH; Lee H; Lee HJ; Jung YJ; Seo PJ
    Sci Rep; 2020 Dec; 10(1):21257. PubMed ID: 33277567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana.
    Schuler M; Keller A; Backes C; Philippar K; Lenhof HP; Bauer P
    BMC Plant Biol; 2011 May; 11():87. PubMed ID: 21592396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration.
    Cervantes-Pérez SA; Espinal-Centeno A; Oropeza-Aburto A; Caballero-Pérez J; Falcon F; Aragón-Raygoza A; Sánchez-Segura L; Herrera-Estrella L; Cruz-Hernández A; Cruz-Ramírez A
    Dev Biol; 2018 Oct; 442(1):28-39. PubMed ID: 29705332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.
    Gao C; Li D; Jin C; Duan S; Qi S; Liu K; Wang H; Ma H; Hai J; Chen M
    Biochem Biophys Res Commun; 2017 Apr; 485(2):360-365. PubMed ID: 28216162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves.
    Begara-Morales JC; Sánchez-Calvo B; Luque F; Leyva-Pérez MO; Leterrier M; Corpas FJ; Barroso JB
    Plant Cell Physiol; 2014 Jun; 55(6):1080-95. PubMed ID: 24599390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.
    Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X
    BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response.
    Qin F; Kodaira KS; Maruyama K; Mizoi J; Tran LS; Fujita Y; Morimoto K; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Physiol; 2011 Dec; 157(4):1900-13. PubMed ID: 22013217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7.
    Liu T; Carlsson J; Takeuchi T; Newton L; Farré EM
    Plant J; 2013 Oct; 76(1):101-14. PubMed ID: 23808423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis.
    Shim S; Lee HG; Park OS; Shin H; Lee K; Lee H; Huh JH; Seo PJ
    Epigenetics; 2022 Jan; 17(1):41-58. PubMed ID: 33406971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.