BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 27215286)

  • 21. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System.
    Zhang Y; Bassel-Duby R; Olson EN
    Methods Mol Biol; 2023; 2587():411-425. PubMed ID: 36401041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives.
    Chen G; Wei T; Yang H; Li G; Li H
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Editing Therapy for Duchenne Muscular Dystrophy.
    Chemello F; Olson EN; Bassel-Duby R
    Hum Gene Ther; 2023 May; 34(9-10):379-387. PubMed ID: 37060194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy.
    Wang DN; Wang ZQ; Jin M; Lin MT; Wang N
    Gene Ther; 2022 Dec; 29(12):730-737. PubMed ID: 35534612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing technologies to fight infectious diseases.
    Trevisan M; Palù G; Barzon L
    Expert Rev Anti Infect Ther; 2017 Nov; 15(11):1001-1013. PubMed ID: 29090592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.
    Nelson CE; Hakim CH; Ousterout DG; Thakore PI; Moreb EA; Castellanos Rivera RM; Madhavan S; Pan X; Ran FA; Yan WX; Asokan A; Zhang F; Duan D; Gersbach CA
    Science; 2016 Jan; 351(6271):403-7. PubMed ID: 26721684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.
    Laurent M; Geoffroy M; Pavani G; Guiraud S
    Cells; 2024 May; 13(10):. PubMed ID: 38786024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors.
    Matre PR; Mu X; Wu J; Danila D; Hall MA; Kolonin MG; Darabi R; Huard J
    Stem Cells; 2019 Dec; 37(12):1615-1628. PubMed ID: 31574188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refining strategies to translate genome editing to the clinic.
    Cornu TI; Mussolino C; Cathomen T
    Nat Med; 2017 Apr; 23(4):415-423. PubMed ID: 28388605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.
    Amoasii L; Hildyard JCW; Li H; Sanchez-Ortiz E; Mireault A; Caballero D; Harron R; Stathopoulou TR; Massey C; Shelton JM; Bassel-Duby R; Piercy RJ; Olson EN
    Science; 2018 Oct; 362(6410):86-91. PubMed ID: 30166439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-viral delivery of genome-editing nucleases for gene therapy.
    Wang M; Glass ZA; Xu Q
    Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs.
    Dhoke NR; Kim H; Azzag K; Crist SB; Kiley J; Perlingeiro RCR
    Cells; 2024 Jun; 13(11):. PubMed ID: 38891104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transiently expressed CRISPR/Cas9 induces wild-type dystrophin in vitro in DMD patient myoblasts carrying duplications.
    Pini V; Mariot V; Dumonceaux J; Counsell J; O'Neill HC; Farmer S; Conti F; Muntoni F
    Sci Rep; 2022 Mar; 12(1):3756. PubMed ID: 35260651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
    Amoasii L; Long C; Li H; Mireault AA; Shelton JM; Sanchez-Ortiz E; McAnally JR; Bhattacharyya S; Schmidt F; Grimm D; Hauschka SD; Bassel-Duby R; Olson EN
    Sci Transl Med; 2017 Nov; 9(418):. PubMed ID: 29187645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome editing: the road of CRISPR/Cas9 from bench to clinic.
    Eid A; Mahfouz MM
    Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy.
    Lim KRQ; Nguyen Q; Dzierlega K; Huang Y; Yokota T
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32213923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse.
    Amoasii L; Li H; Zhang Y; Min YL; Sanchez-Ortiz E; Shelton JM; Long C; Mireault AA; Bhattacharyya S; McAnally JR; Bassel-Duby R; Olson EN
    Nat Commun; 2019 Oct; 10(1):4537. PubMed ID: 31586095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy.
    Cai A; Kong X
    Hum Gene Ther Methods; 2019 Jun; 30(3):71-80. PubMed ID: 31062609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.