BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 27215286)

  • 61. Retroviral Vectors for Cancer Gene Therapy.
    Schambach A; Morgan M
    Recent Results Cancer Res; 2016; 209():17-35. PubMed ID: 28101685
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.
    Chaterji S; Ahn EH; Kim DH
    Theranostics; 2017; 7(18):4445-4469. PubMed ID: 29158838
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model.
    Bengtsson NE; Crudele JM; Klaiman JM; Halbert CL; Hauschka SD; Chamberlain JS
    Mol Ther; 2022 Jun; 30(6):2176-2185. PubMed ID: 35143959
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toward the correction of muscular dystrophy by gene editing.
    Olson EN
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34074727
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy.
    Padmaswari MH; Agrawal S; Jia MS; Ivy A; Maxenberger DA; Burcham LA; Nelson CE
    Biophys Rev (Melville); 2023 Mar; 4(1):011307. PubMed ID: 36864908
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA.
    Long C; McAnally JR; Shelton JM; Mireault AA; Bassel-Duby R; Olson EN
    Science; 2014 Sep; 345(6201):1184-1188. PubMed ID: 25123483
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characteristics of Genome Editing Mutations in Cereal Crops.
    Zhu C; Bortesi L; Baysal C; Twyman RM; Fischer R; Capell T; Schillberg S; Christou P
    Trends Plant Sci; 2017 Jan; 22(1):38-52. PubMed ID: 27645899
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In Vivo Delivery Systems for Therapeutic Genome Editing.
    Wang L; Li F; Dang L; Liang C; Wang C; He B; Liu J; Li D; Wu X; Xu X; Lu A; Zhang G
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27128905
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Delivery technologies for genome editing.
    Yin H; Kauffman KJ; Anderson DG
    Nat Rev Drug Discov; 2017 Jun; 16(6):387-399. PubMed ID: 28337020
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach.
    Tremblay JP; Iyombe-Engembe JP; Duchêne B; Ouellet DL
    Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992
    [No Abstract]   [Full Text] [Related]  

  • 71. Non-viral strategies for delivering genome editing enzymes.
    Li J; Røise JJ; He M; Das R; Murthy N
    Adv Drug Deliv Rev; 2021 Jan; 168():99-117. PubMed ID: 32931860
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing.
    Zhang Y; Li H; Nishiyama T; McAnally JR; Sanchez-Ortiz E; Huang J; Mammen PPA; Bassel-Duby R; Olson EN
    Mol Ther Nucleic Acids; 2022 Sep; 29():525-537. PubMed ID: 36035749
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing.
    Sugihara H; Kimura K; Yamanouchi K; Teramoto N; Okano T; Daimon M; Morita H; Takenaka K; Shiga T; Tanihata J; Aoki Y; Inoue-Nagamura T; Yotsuyanagi H; Komuro I
    Int Heart J; 2020 Nov; 61(6):1279-1284. PubMed ID: 33191355
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus.
    Gutierrez-Guerrero A; Sanchez-Hernandez S; Galvani G; Pinedo-Gomez J; Martin-Guerra R; Sanchez-Gilabert A; Aguilar-González A; Cobo M; Gregory P; Holmes M; Benabdellah K; Martin F
    Hum Gene Ther; 2018 Mar; 29(3):366-380. PubMed ID: 28922955
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy.
    Hotta A
    J Neuromuscul Dis; 2015 Sep; 2(4):343-355. PubMed ID: 27858753
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CRISPR/Cas9 Technology in Restoring Dystrophin Expression in iPSC-Derived Muscle Progenitors.
    Jin Y; Shen Y; Su X; Weintraub N; Tang Y
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566614
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional correction of dystrophin actin binding domain mutations by genome editing.
    Kyrychenko V; Kyrychenko S; Tiburcy M; Shelton JM; Long C; Schneider JW; Zimmermann WH; Bassel-Duby R; Olson EN
    JCI Insight; 2017 Sep; 2(18):. PubMed ID: 28931764
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
    Mout R; Ray M; Lee YW; Scaletti F; Rotello VM
    Bioconjug Chem; 2017 Apr; 28(4):880-884. PubMed ID: 28263568
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genome Editing in Stem Cells for Disease Therapeutics.
    Song M; Ramakrishna S
    Mol Biotechnol; 2018 Apr; 60(4):329-338. PubMed ID: 29516417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.