These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27215663)

  • 1. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.
    Nishimoto Y
    J Phys Chem A; 2016 Feb; 120(5):771-84. PubMed ID: 26761635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method.
    Brorsen KR; Zahariev F; Nakata H; Fedorov DG; Gordon MS
    J Chem Theory Comput; 2014 Dec; 10(12):5297-307. PubMed ID: 26583213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Chem Theory Comput; 2023 Feb; 19(4):1276-1285. PubMed ID: 36753486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Dependent Long-Range-Corrected Density-Functional Tight-Binding Method Combined with the Polarizable Continuum Model.
    Nishimoto Y
    J Phys Chem A; 2019 Jul; 123(26):5649-5659. PubMed ID: 31150233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study.
    Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I
    J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method.
    Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A
    J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.