BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27216034)

  • 1. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species.
    Tero R; Yamashita R; Hashizume H; Suda Y; Takikawa H; Hori M; Ito M
    Arch Biochem Biophys; 2016 Sep; 605():26-33. PubMed ID: 27216034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid bilayer membrane with atomic step structure: supported bilayer on a step-and-terrace TiO2(100) surface.
    Tero R; Ujihara T; Urisu T
    Langmuir; 2008 Oct; 24(20):11567-76. PubMed ID: 18785710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate.
    Werner JH; Montaño GA; Garcia AL; Zurek NA; Akhadov EA; Lopez GP; Shreve AP
    Langmuir; 2009 Mar; 25(5):2986-93. PubMed ID: 19437708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments.
    Yusupov M; Wende K; Kupsch S; Neyts EC; Reuter S; Bogaerts A
    Sci Rep; 2017 Jul; 7(1):5761. PubMed ID: 28720839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials.
    Birkholz O; Burns JR; Richter CP; Psathaki OE; Howorka S; Piehler J
    Nat Commun; 2018 Apr; 9(1):1521. PubMed ID: 29670084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of membrane properties affected by plasma ROS based on the GROMOS force field.
    Hu Y; Zhao T; Zou L; Wang X; Zhang Y
    Biophys Chem; 2019 Oct; 253():106214. PubMed ID: 31272076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence microscopy of the pressure-dependent structure of lipid bilayers suspended across conical nanopores.
    Schibel AE; Heider EC; Harris JM; White HS
    J Am Chem Soc; 2011 May; 133(20):7810-5. PubMed ID: 21542629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-catalyzed hydrolysis of the supported phospholipid bilayers studied by atomic force microscopy.
    Wu H; Yu L; Tong Y; Ge A; Yau S; Osawa M; Ye S
    Biochim Biophys Acta; 2013 Feb; 1828(2):642-51. PubMed ID: 22995243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy.
    Burns JR; Howorka S
    ACS Nano; 2018 Apr; 12(4):3263-3271. PubMed ID: 29493216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.
    Nussio MR; Oncins G; Ridelis I; Szili E; Shapter JG; Sanz F; Voelcker NH
    J Phys Chem B; 2009 Jul; 113(30):10339-47. PubMed ID: 19572625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid bilayer formation on a variety of nanoporous oxide and organic xerogel films.
    Nellis BA; Satcher JH; Risbud SH
    Acta Biomater; 2011 Jan; 7(1):380-6. PubMed ID: 20674809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy.
    Choi EJ; Dimitriadis EK
    Biophys J; 2004 Nov; 87(5):3234-41. PubMed ID: 15347587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers.
    Benz M; Gutsmann T; Chen N; Tadmor R; Israelachvili J
    Biophys J; 2004 Feb; 86(2):870-9. PubMed ID: 14747322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.
    Das C; Sheikh KH; Olmsted PD; Connell SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041920. PubMed ID: 21230326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I.
    Pera I; Stark R; Kappl M; Butt HJ; Benfenati F
    Biophys J; 2004 Oct; 87(4):2446-55. PubMed ID: 15454442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nanotopography on phospholipid bilayer formation on silicon dioxide.
    Pfeiffer I; Seantier B; Petronis S; Sutherland D; Kasemo B; Zäch M
    J Phys Chem B; 2008 Apr; 112(16):5175-81. PubMed ID: 18370429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.