These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2721609)

  • 1. Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction.
    Favilla M; Hening W; Ghez C
    Exp Brain Res; 1989; 75(2):280-94. PubMed ID: 2721609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude.
    Hening W; Favilla M; Ghez C
    Exp Brain Res; 1988; 71(1):116-28. PubMed ID: 3416946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory control in targeted force impulses. VII. Independent setting of amplitude and direction in response preparation.
    Favilla M; Gordon J; Hening W; Ghez C
    Exp Brain Res; 1990; 79(3):530-8. PubMed ID: 2340872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete and continuous planning of hand movements and isometric force trajectories.
    Ghez C; Favilla M; Ghilardi MF; Gordon J; Bermejo R; Pullman S
    Exp Brain Res; 1997 Jun; 115(2):217-33. PubMed ID: 9224851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradual specification of response amplitude in human tracking performance.
    Ghez C; Hening W; Favilla M
    Brain Behav Evol; 1989; 33(2-3):69-74. PubMed ID: 2758304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory control in targeted force impulses. IV. Influences of choice, prior experience and urgency.
    Hening W; Vicario D; Ghez C
    Exp Brain Res; 1988; 71(1):103-15. PubMed ID: 3416945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectory control in targeted force impulses. II. Pulse height control.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):241-52. PubMed ID: 3622687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired direction and extent specification of aimed arm movements in humans with stroke-related brain damage.
    Velicki MR; Winstein CJ; Pohl PS
    Exp Brain Res; 2000 Feb; 130(3):362-74. PubMed ID: 10706435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of rapid limb movement in the cat. IV. Updating of ongoing isometric responses.
    Vicario DS; Ghez C
    Exp Brain Res; 1984; 55(1):134-44. PubMed ID: 6540198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of successive force impulses by the left and right hands.
    Hammond G; Gunasekera S
    J Mot Behav; 2008 Sep; 40(5):409-16. PubMed ID: 18782716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):253-69. PubMed ID: 3622688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory control in targeted force impulses. I. Role of opposing muscles.
    Ghez C; Gordon J
    Exp Brain Res; 1987; 67(2):225-40. PubMed ID: 3622686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficits in compensatory trajectory adjustments after unilateral sensorimotor stroke.
    Fisher BE; Winstein CJ; Velicki MR
    Exp Brain Res; 2000 Jun; 132(3):328-44. PubMed ID: 10883381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional linkages between motor cortical cells and elbow flexor muscles. Evidence for and characteristics of postspike facilitation.
    Fourment A; Belhaj-Saïf A; Maton B
    J Neurophysiol; 1995 Jul; 74(1):130-41. PubMed ID: 7472318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive spatial-motor processes. 5. Specification of the direction of visually guided isometric forces in two-dimensional space: time course of information transmitted and effect of constant force bias.
    Massey JT; Drake RA; Georgopoulos AP
    Exp Brain Res; 1991; 83(2):446-52. PubMed ID: 2022250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The time course of cross-talk during the simultaneous specification of bimanual movement amplitudes.
    Heuer H; Spijkers W; Kleinsorge T; van der Loo H; Steglich C
    Exp Brain Res; 1998 Feb; 118(3):381-92. PubMed ID: 9497145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The time course of amplitude specification in brief interceptive actions.
    Marinovic W; Plooy A; Tresilian JR
    Exp Brain Res; 2008 Jun; 188(2):275-88. PubMed ID: 18415092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.
    Cantagallo A; Di Russo F; Favilla M; Zoccolotti P
    J Neurotrauma; 2015 Apr; 32(8):563-70. PubMed ID: 25273979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production.
    Park JH; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(3):337-47. PubMed ID: 16328255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.