These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27216209)

  • 1. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses.
    Baker O; Gupta A; Obst M; Zhang Y; Anastassiadis K; Fu J; Stewart AF
    Sci Rep; 2016 May; 6():25529. PubMed ID: 27216209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors.
    Natsume T; Kiyomitsu T; Saga Y; Kanemaki MT
    Cell Rep; 2016 Apr; 15(1):210-218. PubMed ID: 27052166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.
    Schwartz ML; Jorgensen EM
    Genetics; 2016 Apr; 202(4):1277-88. PubMed ID: 26837755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole.
    Yesbolatova A; Natsume T; Hayashi KI; Kanemaki MT
    Methods; 2019 Jul; 164-165():73-80. PubMed ID: 31026591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells.
    Lambrus BG; Moyer TC; Holland AJ
    Methods Cell Biol; 2018; 144():107-135. PubMed ID: 29804665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of homology arms to nuclease-assisted genome engineering.
    Baker O; Tsurkan S; Fu J; Klink B; Rump A; Obst M; Kranz A; Schröck E; Anastassiadis K; Stewart AF
    Nucleic Acids Res; 2017 Jul; 45(13):8105-8115. PubMed ID: 28582546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient method to generate conditional knockout cell lines for essential genes by combination of auxin-inducible degron tag and CRISPR/Cas9.
    Nishimura K; Fukagawa T
    Chromosome Res; 2017 Oct; 25(3-4):253-260. PubMed ID: 28589221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Tagging of AGO1 Using CRISPR/Cas9-Mediated Homologous Recombination.
    Ghosh S; Liu JL
    Methods Mol Biol; 2018; 1680():217-235. PubMed ID: 29030852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system.
    Zhang Y; Vanoli F; LaRocque JR; Krawczyk PM; Jasin M
    Methods; 2014 Sep; 69(2):171-178. PubMed ID: 24929070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.
    Bence M; Jankovics F; Lukácsovich T; Erdélyi M
    FEBS J; 2017 Apr; 284(7):1056-1069. PubMed ID: 28207183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR/Cas9-based method for seamless N-terminal protein tagging in Saccharomyces cerevisiae.
    Kira S; Noda T
    Yeast; 2021 Nov; 38(11):592-600. PubMed ID: 34463385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein.
    Jung CJ; Zhang J; Trenchard E; Lloyd KC; West DB; Rosen B; de Jong PJ
    Transgenic Res; 2017 Apr; 26(2):263-277. PubMed ID: 27905063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Nucleoporin Function Using Inducible Degron Techniques.
    Aksenova V; Arnaoutov A; Dasso M
    Methods Mol Biol; 2022; 2502():129-150. PubMed ID: 35412236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Tagging with the CRISPR-Cas9 System to Facilitate Macromolecular Complex Purification.
    Geny S; Pichard S; Poterszman A; Concordet JP
    Methods Mol Biol; 2021; 2305():153-174. PubMed ID: 33950389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in Saccharomyces cerevisiae.
    Li ZH; Meng H; Ma B; Tao X; Liu M; Wang FQ; Wei DZ
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):83-96. PubMed ID: 31768773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion.
    Lin DW; Chung BP; Huang JW; Wang X; Huang L; Kaiser P
    J Biol Chem; 2019 Jul; 294(28):10877-10885. PubMed ID: 31138654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of FLIP and FLIP-FlpE Targeting Vectors for Biallelic Conditional and Reversible Gene Knockouts in Mouse and Human Cells.
    Koo BK
    Methods Mol Biol; 2018; 1842():255-264. PubMed ID: 30196416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.