BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27216539)

  • 21. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications.
    Wang Y; Gu C; Bai S; Sun Z; Zhu T; Zhu X; Grit DH; Tembrock LR
    Int J Phytoremediation; 2016 Nov; 18(11):1104-12. PubMed ID: 27196684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytostabilization of Pb-Zn Mine Tailings with
    Sikdar A; Wang J; Hasanuzzaman M; Liu X; Feng S; Roy R; Sial TA; Lahori AH; Arockiam Jeyasundar PGS; Wang X
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico.
    Cortés-Jiménez EV; Mugica-Alvarez V; González-Chávez MC; Carrillo-González R; Martínez Gordillo M; Vaca Mier M
    Int J Phytoremediation; 2013; 15(2):127-41. PubMed ID: 23487991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption and translocation of copper, zinc and chromium by Sesbania virgata.
    Branzini A; González RS; Zubillaga M
    J Environ Manage; 2012 Jul; 102():50-4. PubMed ID: 22425878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Ecological Effects of Species Diversity on Plant Growth and Physico-Chemical Properties in a Pb-Zn Mine Tailings].
    Yang SX; Cao JB; Li FM; Peng XZ
    Huan Jing Ke Xue; 2021 Aug; 42(8):3953-3962. PubMed ID: 34309282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils.
    Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B
    J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings.
    Zhou C; Huang M; Ren H; Yu J; Wu J; Ma X
    Ecotoxicol Environ Saf; 2017 Aug; 142():59-68. PubMed ID: 28388478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China.
    Lei D; Duan C
    J Environ Sci (China); 2008; 20(10):1202-9. PubMed ID: 19143344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne.
    Santibáñez C; Verdugo C; Ginocchio R
    Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments.
    Zhang X; Zhu Y; Zhang Y; Liu Y; Liu S; Guo J; Li R; Wu S; Chen B
    J Environ Sci (China); 2014 May; 26(5):1080-9. PubMed ID: 25079638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.
    Aboughalma H; Bi R; Schlaak M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):926-33. PubMed ID: 18569305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil.
    Meng L; Guo Q; Mao P; Tian X
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):298-301. PubMed ID: 23771314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings.
    Shu WS; Zhao YL; Yang B; Xia HP; Lan CY
    J Environ Sci (China); 2004; 16(5):730-4. PubMed ID: 15559800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?
    Carmona-Chit E; Carrillo-González R; González-Chávez Mdel C; Vibrans H; Yáñez-Espinosa L; Delgado-Alvarado A
    Int J Phytoremediation; 2016 Sep; 18(9):861-8. PubMed ID: 26939994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico.
    Sánchez-López AS; Del Carmen A González-Chávez M; Carrillo-González R; Vangronsveld J; Díaz-Garduño M
    Int J Phytoremediation; 2015; 17(1-6):476-84. PubMed ID: 25495938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seedling emergence, growth and trace elements tolerance and accumulation by Lamiaceae species in a mine soil.
    Parra A; Zornoza R; Conesa E; Gómez-López MD; Faz A
    Chemosphere; 2014 Oct; 113():132-40. PubMed ID: 25065800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of EDTA on lead uptake by Typha orientalis Presl: a new lead-accumulating species in southern China.
    Li YL; Liu YG; Liu JL; Zeng GM; Li X
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):36-41. PubMed ID: 18465067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.