BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27216539)

  • 41. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.
    Cui S; Zhang T; Zhao S; Li P; Zhou Q; Zhang Q; Han Q
    Int J Phytoremediation; 2013; 15(4):299-306. PubMed ID: 23487996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced establishment of Colophospermum mopane (Kirk ex Benth.) seedlings for phytoremediation of Cu-Ni mine tailings.
    Ultra VU; Tirivarombo S; Toteng O; Ultra W
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60054-60066. PubMed ID: 35411519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.
    Mleczek M; Rutkowski P; Goliński P; Kaczmarek Z; Szentner K; Waliszewska B; Stolarski M; Szczukowski S
    Int J Phytoremediation; 2017 Feb; 19(2):121-132. PubMed ID: 27494361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria.
    Becerra-Castro C; Monterroso C; Prieto-Fernández A; Rodríguez-Lamas L; Loureiro-Viñas M; Acea MJ; Kidd PS
    J Hazard Mater; 2012 May; 217-218():350-9. PubMed ID: 22483595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon.
    Shu WS; Ye ZH; Lan CY; Zhang ZQ; Wong MH
    Environ Pollut; 2002; 120(2):445-53. PubMed ID: 12395858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pongamia pinnata inoculated with Bradyrhizobium liaoningense PZHK1 shows potential for phytoremediation of mine tailings.
    Yu X; Li Y; Li Y; Xu C; Cui Y; Xiang Q; Gu Y; Zhao K; Zhang X; Penttinen P; Chen Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1739-1751. PubMed ID: 27858136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments.
    Meeinkuirt W; Pokethitiyook P; Kruatrachue M; Tanhan P; Chaiyarat R
    Int J Phytoremediation; 2012 Oct; 14(9):925-38. PubMed ID: 22908655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.
    Andrade SA; Silveira AP; Mazzafera P
    Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.
    Melato FA; Mokgalaka NS; McCrindle RI
    Int J Phytoremediation; 2016; 18(5):509-20. PubMed ID: 26588814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator.
    Sun Q; Ye ZH; Wang XR; Wong MH
    Phytochemistry; 2005 Nov; 66(21):2549-56. PubMed ID: 16225897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead-zinc mine tailings in Zhejiang, China.
    Li J; Jin Z; Gu Q
    Can J Microbiol; 2011 Jul; 57(7):569-77. PubMed ID: 21770815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colonization and phytoremediation potential for
    Xin J; Liu Y; Liu J; Tian R
    Environ Technol; 2024 Jan; 45(3):532-543. PubMed ID: 35980148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings.
    Yang B; Shu WS; Ye ZH; Lan CY; Wong MH
    Chemosphere; 2003 Sep; 52(9):1593-600. PubMed ID: 12867192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization.
    Cheng H; Jiang ZY; Liu Y; Ye ZH; Wu ML; Sun CC; Sun FL; Fei J; Wang YS
    Tree Physiol; 2014 Jun; 34(6):646-56. PubMed ID: 24965807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil.
    Baycu G; Tolunay D; Ozden H; Csatari I; Karadag S; Agba T; Rognes SE
    Int J Phytoremediation; 2015; 17(7):622-31. PubMed ID: 25976876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.
    Guittonny-Larchevêque M; Bussière B; Pednault C
    J Environ Qual; 2016 May; 45(3):1036-45. PubMed ID: 27136172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.