These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

700 related articles for article (PubMed ID: 27216571)

  • 1. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "I Felt the Ball"-The Future of Spine Injury Recovery.
    Sharif S; Ali SM
    World Neurosurg; 2020 Aug; 140():602-613. PubMed ID: 32446984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural interfaces for the brain and spinal cord--restoring motor function.
    Jackson A; Zimmermann JB
    Nat Rev Neurol; 2012 Dec; 8(12):690-9. PubMed ID: 23147846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia.
    Benavides FD; Jo HJ; Lundell H; Edgerton VR; Gerasimenko Y; Perez MA
    J Neurosci; 2020 Mar; 40(13):2633-2643. PubMed ID: 31996455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DiSCIoser: unlocking recovery potential of arm sensorimotor functions after spinal cord injury by promoting activity-dependent brain plasticity by means of brain-computer interface technology: a randomized controlled trial to test efficacy.
    Colamarino E; Lorusso M; Pichiorri F; Toppi J; Tamburella F; Serratore G; Riccio A; Tomaiuolo F; Bigioni A; Giove F; Scivoletto G; Cincotti F; Mattia D
    BMC Neurol; 2023 Nov; 23(1):414. PubMed ID: 37990160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic.
    Rejc E; Angeli CA; Atkinson D; Harkema SJ
    Sci Rep; 2017 Oct; 7(1):13476. PubMed ID: 29074997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation.
    Hofer AS; Schwab ME
    Curr Opin Neurol; 2019 Dec; 32(6):828-835. PubMed ID: 31567546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Biomed Tech (Berl); 2006 Jul; 51(2):57-63. PubMed ID: 16915766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of Volitional Motor Control and Overground Walking in Participants With Chronic Clinically Motor Complete Spinal Cord Injury: Restoration of Rehabilitative Function With Epidural Spinal Stimulation (RESTORES) Trial-A Preliminary Study.
    Wan KR; Ng ZYV; Wee SK; Fatimah M; Lui W; Phua MW; So QYR; Maszczyk TK; Premchand B; Saffari SE; Ker RXJ; Ng WH
    J Neurotrauma; 2024 May; 41(9-10):1146-1162. PubMed ID: 38115642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain machine interface and limb reanimation technologies: restoring function after spinal cord injury through development of a bypass system.
    Lobel DA; Lee KH
    Mayo Clin Proc; 2014 May; 89(5):708-14. PubMed ID: 24797649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury.
    Rejc E; Angeli CA
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):337-354. PubMed ID: 30954151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking naturally after spinal cord injury using a brain-spine interface.
    Lorach H; Galvez A; Spagnolo V; Martel F; Karakas S; Intering N; Vat M; Faivre O; Harte C; Komi S; Ravier J; Collin T; Coquoz L; Sakr I; Baaklini E; Hernandez-Charpak SD; Dumont G; Buschman R; Buse N; Denison T; van Nes I; Asboth L; Watrin A; Struber L; Sauter-Starace F; Langar L; Auboiroux V; Carda S; Chabardes S; Aksenova T; Demesmaeker R; Charvet G; Bloch J; Courtine G
    Nature; 2023 Jun; 618(7963):126-133. PubMed ID: 37225984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions.
    Pizzolato C; Gunduz MA; Palipana D; Wu J; Grant G; Hall S; Dennison R; Zafonte RD; Lloyd DG; Teng YD
    Exp Neurol; 2021 May; 339():113612. PubMed ID: 33453213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury.
    Darrow D; Balser D; Netoff TI; Krassioukov A; Phillips A; Parr A; Samadani U
    J Neurotrauma; 2019 Aug; 36(15):2325-2336. PubMed ID: 30667299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury.
    Calvert JS; Grahn PJ; Zhao KD; Lee KH
    Neuromodulation; 2019 Apr; 22(3):244-252. PubMed ID: 30840354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E; Ibáñez J; Trincado-Alonso F; Monge-Pereira E; Pons JL; Montesano L
    Int J Neural Syst; 2018 Sep; 28(7):1750060. PubMed ID: 29463157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury.
    Cajigas I; Vedantam A
    Neurosurg Clin N Am; 2021 Jul; 32(3):407-417. PubMed ID: 34053728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.