These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 27216571)

  • 21. Brain-controlled muscle stimulation for the restoration of motor function.
    Ethier C; Miller LE
    Neurobiol Dis; 2015 Nov; 83():180-90. PubMed ID: 25447224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury.
    Hachmann JT; Yousak A; Wallner JJ; Gad PN; Edgerton VR; Gorgey AS
    J Neurophysiol; 2021 Dec; 126(6):1843-1859. PubMed ID: 34669485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Editorial. Advancement in brain-machine interfaces for patients with tetraplegia: neurosurgical perspective.
    Hu K; Bounni F; Williams Z
    Neurosurg Focus; 2017 Jul; 43(1):E5. PubMed ID: 28669301
    [No Abstract]   [Full Text] [Related]  

  • 24. And yet it moves: Recovery of volitional control after spinal cord injury.
    Taccola G; Sayenko D; Gad P; Gerasimenko Y; Edgerton VR
    Prog Neurobiol; 2018 Jan; 160():64-81. PubMed ID: 29102670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array.
    Ting JE; Del Vecchio A; Sarma D; Verma N; Colachis SC; Annetta NV; Collinger JL; Farina D; Weber DJ
    J Neurophysiol; 2021 Dec; 126(6):2104-2118. PubMed ID: 34788156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury.
    Pierella C; De Luca A; Tasso E; Cervetto F; Gamba S; Losio L; Quinland E; Venegoni A; Mandraccia S; Muller I; Massone A; Mussa-Ivaldi FA; Casadio M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1100-1105. PubMed ID: 28813968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain-machine interface for brain injury.
    Flint RD; Li Y; Wang PT; Vaidya M; Barry A; Ghassemi M; Tomic G; Brkic N; Ripley D; Liu C; Kamper D; Do AH; Slutzky MW
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35576911
    [No Abstract]   [Full Text] [Related]  

  • 28. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord.
    Jack AS; Hurd C; Martin J; Fouad K
    J Neurotrauma; 2020 Sep; 37(18):1933-1953. PubMed ID: 32438858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.
    Minassian K; McKay WB; Binder H; Hofstoetter US
    Neurotherapeutics; 2016 Apr; 13(2):284-94. PubMed ID: 26843089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Training with noninvasive brain-machine interface, tactile feedback, and locomotion to enhance neurological recovery in individuals with complete paraplegia: a randomized pilot study.
    Nicolelis MAL; Alho EJL; Donati ARC; Yonamine S; Aratanha MA; Bao G; Campos DSF; Almeida S; Fischer D; Shokur S
    Sci Rep; 2022 Nov; 12(1):20545. PubMed ID: 36446797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury.
    Samejima S; Henderson R; Pradarelli J; Mondello SE; Moritz CT
    Exp Neurol; 2022 Nov; 357():114178. PubMed ID: 35878817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Dunham C; DeJong S; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2159-62. PubMed ID: 26736717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain-machine interface (BMI) in paralysis.
    Chaudhary U; Birbaumer N; Curado MR
    Ann Phys Rehabil Med; 2015 Feb; 58(1):9-13. PubMed ID: 25623294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury.
    Torregrosa T; Koppes RA
    Cells Tissues Organs; 2016; 202(1-2):6-22. PubMed ID: 27701161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.
    Shahdoost S; Frost S; Van Acker G; DeJong S; Dunham C; Barbay S; Nudo R; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():486-9. PubMed ID: 25570002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restoration of sensorimotor functions after spinal cord injury.
    Dietz V; Fouad K
    Brain; 2014 Mar; 137(Pt 3):654-67. PubMed ID: 24103913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans.
    Minassian K; Hofstoetter US
    CNS Neurosci Ther; 2016 Apr; 22(4):262-70. PubMed ID: 26890324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of brain plasticity and recovery of locomotive function after lumbar spinal cord stimulation in combination with gait training with partial weight support in rats with cerebral ischemia.
    Choi YH; Lee SU
    Brain Res; 2017 May; 1662():31-38. PubMed ID: 28237545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of Neuroprosthetic Approaches to Restoration of Upper Extremity Function in Spinal Cord Injury.
    Kilgore KL; Bryden A; Keith MW; Hoyen HA; Hart RL; Nemunaitis GA; Peckham PH
    Top Spinal Cord Inj Rehabil; 2018; 24(3):252-264. PubMed ID: 29997428
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.