BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27216643)

  • 61. Citrus bioflavonoid, hesperetin, as inhibitor of two thrombin-like snake venom serine proteases isolated from Crotalus simus.
    Vander Dos Santos R; Villalta-Romero F; Stanisic D; Borro L; Neshich G; Tasic L
    Toxicon; 2018 Mar; 143():36-43. PubMed ID: 29337219
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bacterial expression of a snake venom metalloproteinase inhibitory protein from the North American opossum (D.virginiana).
    Werner RM; Miling LM; Elliott BM; Hawes MR; Wickens JM; Webber DE
    Toxicon; 2021 Apr; 194():1-10. PubMed ID: 33581173
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Antivenom activity of opossum (Didelphis marsupialis) serum fraction.
    Rodriguez-Acosta A; Aguilar I; Giron ME
    Toxicon; 1995 Jan; 33(1):95-8. PubMed ID: 7778133
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Amino acid sequences of myotoxins from Crotalus viridis concolor venom.
    Bieber AL; McParland RH; Becker RR
    Toxicon; 1987; 25(6):677-80. PubMed ID: 3629618
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of enzymatic activity in muscle damage and cytotoxicity induced by Bothrops asper Asp49 phospholipase A2 myotoxins: are there additional effector mechanisms involved?
    Mora-Obando D; Díaz C; Angulo Y; Gutiérrez JM; Lomonte B
    PeerJ; 2014; 2():e569. PubMed ID: 25276503
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In Silico Molecular Studies of Antiophidic Properties of the Amazonian Tree
    Luzuriaga-Quichimbo CX; Blanco-Salas J; Muñoz-Centeno LM; Peláez R; Cerón-Martínez CE; Ruiz-Téllez T
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31744153
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Focused Proteomics Analysis of Habu Snake (
    Ogawa T; Tobishima Y; Kamata S; Matsuda Y; Muramoto K; Hidaka M; Futai E; Kuraishi T; Yokota S; Ohno M; Hattori S
    Front Pharmacol; 2021; 12():766406. PubMed ID: 34803710
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by
    Reyes A; Hatcher JD; Salazar E; Galan J; Iliuk A; Sanchez EE; Suntravat M
    Toxins (Basel); 2023 Jul; 15(7):. PubMed ID: 37505703
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In-solution structural studies involving a phospholipase A
    Cardoso FF; de Souza MF; Oliveira CLP; Fontes MRM
    Biochimie; 2021 Feb; 181():145-153. PubMed ID: 33333169
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A simple and rapid method for isolating small myotoxins from rattlesnake venoms.
    Li Q; Colberg TR; Ownby CL
    Toxicon; 1993 Sep; 31(9):1197-201. PubMed ID: 8266350
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using yeast two-hybrid system and molecular dynamics simulation to detect venom protein-protein interactions.
    Jia Y; Kowalski P; Lopez I
    Curr Res Toxicol; 2021; 2():93-98. PubMed ID: 34345854
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence.
    Félix-Silva J; Silva-Junior AA; Zucolotto SM; Fernandes-Pedrosa MF
    Evid Based Complement Alternat Med; 2017; 2017():5748256. PubMed ID: 28904556
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Alpha-type phospholipase A
    Santos-Filho NA; Santos CT
    J Venom Anim Toxins Incl Trop Dis; 2017; 23():19. PubMed ID: 28344595
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Specific in vitro biological activity of snake venom myotoxins.
    Brusés JL; Capaso J; Katz E; Pilar G
    J Neurochem; 1993 Mar; 60(3):1030-42. PubMed ID: 8436956
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unraveling snake venom phospholipase A
    Sampat GH; Hiremath K; Dodakallanavar J; Patil VS; Harish DR; Biradar P; Mahadevamurthy RK; Barvaliya M; Roy S
    Pharmacol Rep; 2023 Dec; 75(6):1454-1473. PubMed ID: 37926795
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterologous expression of the antimyotoxic protein DM64 in Pichia pastoris.
    Vieira SM; da Rocha SLG; Neves-Ferreira AGDC; Almeida RV; Perales J
    PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005829. PubMed ID: 28759578
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach.
    Rocha SL; Neves-Ferreira AG; Trugilho MR; Angulo Y; Lomonte B; Valente RH; Domont GB; Perales J
    J Proteomics; 2017 Jan; 151():204-213. PubMed ID: 27216643
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from Didelphis marsupialis serum.
    Rocha SL; Lomonte B; Neves-Ferreira AG; Trugilho MR; Junqueira-de-Azevedo Ide L; Ho PL; Domont GB; Gutiérrez JM; Perales J
    Eur J Biochem; 2002 Dec; 269(24):6052-62. PubMed ID: 12473101
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From
    Soares BS; Rocha SLG; Bastos VA; Lima DB; Carvalho PC; Gozzo FC; Demeler B; Williams TL; Arnold J; Henrickson A; Jørgensen TJD; Souza TACB; Perales J; Valente RH; Lomonte B; Gomes-Neto F; Neves-Ferreira AGC
    Front Mol Biosci; 2021; 8():787368. PubMed ID: 35155563
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.