These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27216679)

  • 41. SPME-HPLC: a new approach to the analysis of explosives.
    Gaurav ; Kaur V; Kumar A; Malik AK; Rai PK
    J Hazard Mater; 2007 Aug; 147(3):691-7. PubMed ID: 17630188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Applications of strong interactions between photons and molecules to analytical sciences.
    Yamada S
    Anal Sci; 2009 Sep; 25(9):1059-68. PubMed ID: 19745531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.
    Sun W; Liang M; Li Z; Shu J; Yang B; Xu C; Zou Y
    Talanta; 2016 Aug; 156-157():191-195. PubMed ID: 27260452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.
    Craig IM; Taubman MS; Lea AS; Phillips MC; Josberger EE; Raschke MB
    Opt Express; 2013 Dec; 21(25):30401-14. PubMed ID: 24514618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection.
    Piccin E; Dossi N; Cagan A; Carrilho E; Wang J
    Analyst; 2009 Mar; 134(3):528-32. PubMed ID: 19238290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection.
    Hopkins AJ; Cooper JL; Profeta LT; Ford AR
    Appl Spectrosc; 2016 May; 70(5):861-73. PubMed ID: 27059445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The analysis of nitrate explosive vapour samples using Lab-on-a-chip instrumentation.
    Taranto V; Ueland M; Forbes SL; Blanes L
    J Chromatogr A; 2019 Sep; 1602():467-473. PubMed ID: 31178161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arc-Induced Nitrate Reagent Ion for Analysis of Trace Explosives on Surfaces Using Atmospheric Pressure Arc Desorption/Ionization Mass Spectrometry.
    Gao Y; Chu F; Chen W; Wang X; Pan Y
    Anal Chem; 2022 Apr; 94(14):5463-5468. PubMed ID: 35357149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isotopic and elemental profiling of ammonium nitrate in forensic explosives investigations.
    Brust H; Koeberg M; van der Heijden A; Wiarda W; Mügler I; Schrader M; Vivo-Truyols G; Schoenmakers P; van Asten A
    Forensic Sci Int; 2015 Mar; 248():101-12. PubMed ID: 25602642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of Multiple Nitroaromatic Explosives via Formation of a Janowsky Complex and SERS.
    Milligan K; Shand NC; Graham D; Faulds K
    Anal Chem; 2020 Feb; 92(4):3253-3261. PubMed ID: 31927940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser ion mobility spectrometry in the detection of ultra-low quantities of explosives.
    Akmalov AE; Chistyakov AA; Kotkovskii GE; Martynov IL; Spitsin EM
    Eur J Mass Spectrom (Chichester); 2017 Aug; 23(4):140-145. PubMed ID: 29028403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples.
    Guan W; Xu F; Liu W; Zhao J; Guan Y
    J Chromatogr A; 2007 Apr; 1147(1):59-65. PubMed ID: 17346721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photonic sensor devices for explosive detection.
    Willer U; Schade W
    Anal Bioanal Chem; 2009 Sep; 395(2):275-82. PubMed ID: 19597802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives.
    Piorek BD; Lee SJ; Moskovits M; Meinhart CD
    Anal Chem; 2012 Nov; 84(22):9700-5. PubMed ID: 23067072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micro-solid-phase extraction coupled to desorption electrospray ionization-high-resolution mass spectrometry for the analysis of explosives in soil.
    Bianchi F; Gregori A; Braun G; Crescenzi C; Careri M
    Anal Bioanal Chem; 2015 Jan; 407(3):931-8. PubMed ID: 25277104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of explosives in hair using ion mobility spectrometry.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S; Vadlamannati S
    J Forensic Sci; 2008 May; 53(3):690-3. PubMed ID: 18471216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct mass spectrometric detection of trace explosives in soil samples.
    Ma L; Xin B; Chen Y
    Analyst; 2012 Apr; 137(7):1730-6. PubMed ID: 22363928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues.
    Peng T; Qin W; Wang K; Shi J; Fan C; Li D
    Anal Chem; 2015 Sep; 87(18):9403-7. PubMed ID: 26292147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.
    Sathish V; Ramdass A; Velayudham M; Lu KL; Thanasekaran P; Rajagopal S
    Dalton Trans; 2017 Dec; 46(48):16738-16769. PubMed ID: 29125159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.