These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27216730)

  • 21. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments.
    Okkenhaug G; Amstätter K; Lassen Bue H; Cornelissen G; Breedveld GD; Henriksen T; Mulder J
    Environ Sci Technol; 2013 Jun; 47(12):6431-9. PubMed ID: 23668960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic carbon leaching behavior from incinerator bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Sep; 137(2):1096-101. PubMed ID: 16675109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material analysis of Bottom ash from waste-to-energy plants.
    Šyc M; Krausová A; Kameníková P; Šomplák R; Pavlas M; Zach B; Pohořelý M; Svoboda K; Punčochář M
    Waste Manag; 2018 Mar; 73():360-366. PubMed ID: 29103897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.
    Baun DL; Christensen TH; Bergfeldt B; Vehlow J; Mogensen EP
    Waste Manag Res; 2004 Feb; 22(1):58-68. PubMed ID: 15113115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated carbonation for treatment of MSWI bottom ash.
    Arickx S; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Sep; 137(1):235-43. PubMed ID: 16540241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A risk-based approach for assessing the recycling potential of an alkaline waste material as road sub-base filler material.
    Di Gianfilippo M; Verginelli I; Costa G; Spagnuolo R; Gavasci R; Lombardi F
    Waste Manag; 2018 Jan; 71():440-453. PubMed ID: 29037879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching.
    Lin WY; Heng KS; Sun X; Wang JY
    Waste Manag; 2015 Jul; 41():75-84. PubMed ID: 25892439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.
    Hyks J; Astrup T
    Chemosphere; 2009 Aug; 76(9):1178-84. PubMed ID: 19595431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste.
    Klein J; Dorge S; Trouvé G; Venditti D; Durécu S
    J Hazard Mater; 2009 Jul; 166(2-3):585-93. PubMed ID: 19167161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of leaching behaviour by quenching of bottom ash from MSW incineration.
    Marchese F; Genon G
    Waste Manag Res; 2011 Oct; 29(10 Suppl):39-47. PubMed ID: 21057006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues.
    Ettler V; Mihaljevic M; Sebek O
    Waste Manag Res; 2010 Jul; 28(7):587-95. PubMed ID: 19723825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solubility of antimony and other elements in samples taken from shooting ranges.
    Johnson CA; Moench H; Wersin P; Kugler P; Wenger C
    J Environ Qual; 2005; 34(1):248-54. PubMed ID: 15647555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization.
    Sicong T; Jianguo J; Chang Z
    J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China.
    Hu HY; Liu H; Shen WQ; Luo GQ; Li AJ; Lu ZL; Yao H
    Chemosphere; 2013 Oct; 93(4):590-6. PubMed ID: 23800595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of weathering treatment on the fractionation and leaching behavior of copper in municipal solid waste incinerator bottom ash.
    Yao J; Li WB; Tang M; Fang CR; Feng HJ; Shen DS
    Chemosphere; 2010 Oct; 81(5):571-6. PubMed ID: 20832839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimony distribution and mobility in different types of waste derived from the exploitation of stibnite ore deposits.
    Álvarez-Ayuso E; Murciego A; Rodríguez MA; Fernández-Pozo L; Cabezas J; Naranjo-Gómez JM; Mosser-Ruck R
    Sci Total Environ; 2022 Apr; 816():151566. PubMed ID: 34758344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N; Bäckström M
    J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.
    Dabo D; Badreddine R; De Windt L; Drouadaine I
    J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.