These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27216883)

  • 1. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles.
    Ahmadi M; Behafarid F; Cuenya BR
    Nanoscale; 2016 Jun; 8(22):11635-41. PubMed ID: 27216883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects.
    Matos J; Ono LK; Behafarid F; Croy JR; Mostafa S; DeLaRiva AT; Datye AK; Frenkel AI; Roldan Cuenya B
    Phys Chem Chem Phys; 2012 Aug; 14(32):11457-67. PubMed ID: 22801490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations.
    Ahmadi M; Timoshenko J; Behafarid F; Roldan Cuenya B
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10666-10676. PubMed ID: 31049123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the structure of size-selected Pt nanocatalysts synthesized by inverse micelle encapsulation.
    Roldan Cuenya B; Croy JR; Mostafa S; Behafarid F; Li L; Zhang Z; Yang JC; Wang Q; Frenkel AI
    J Am Chem Soc; 2010 Jun; 132(25):8747-56. PubMed ID: 20527749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoepitaxy using micellar nanoparticles.
    Behafarid F; Cuenya BR
    Nano Lett; 2011 Dec; 11(12):5290-6. PubMed ID: 22026561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.
    Sneed BT; Young AP; Jalalpoor D; Golden MC; Mao S; Jiang Y; Wang Y; Tsung CK
    ACS Nano; 2014 Jul; 8(7):7239-50. PubMed ID: 24896733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects.
    Behafarid F; Pandey S; Diaz RE; Stach EA; Cuenya BR
    Phys Chem Chem Phys; 2014 Sep; 16(34):18176-84. PubMed ID: 25052454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 atoms.
    Kozlov SM; Aleksandrov HA; Goniakowski J; Neyman KM
    J Chem Phys; 2013 Aug; 139(8):084701. PubMed ID: 24007023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.
    Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G
    J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of platinum nanoparticles supported on SiO2/Si(111): a high-pressure X-ray photoelectron spectroscopy study.
    Porsgaard S; Merte LR; Ono LK; Behafarid F; Matos J; Helveg S; Salmeron M; Roldan Cuenya B; Besenbacher F
    ACS Nano; 2012 Dec; 6(12):10743-9. PubMed ID: 23140267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organized platinum nanoparticles on freestanding graphene.
    Xu P; Dong L; Neek-Amal M; Ackerman ML; Yu J; Barber SD; Schoelz JK; Qi D; Xu F; Thibado PM; Peeters FM
    ACS Nano; 2014 Mar; 8(3):2697-703. PubMed ID: 24499285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity.
    Gong X; Yang Y; Zhang L; Zou C; Cai P; Chen G; Huang S
    J Colloid Interface Sci; 2010 Dec; 352(2):379-85. PubMed ID: 20851403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles.
    Ahmadi M; Cui C; Mistry H; Strasser P; Cuenya BR
    ACS Nano; 2015 Nov; 9(11):10686-94. PubMed ID: 26418831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural investigation of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles using first-principles calculations.
    Hung SH; Akiba H; Yamamuro O; Ozaki T
    RSC Adv; 2020 Apr; 10(28):16527-16536. PubMed ID: 35498819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling Morphological and Topological Energy Contributions of Metal Nanoparticles.
    Vega L; Viñes F; Neyman KM
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst.
    Cao S; Jiang J; Zhu B; Yu J
    Phys Chem Chem Phys; 2016 Jul; 18(28):19457-63. PubMed ID: 27409401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of faceted palladium(-gold) nanoparticles supported on rutile titania nanorods studied using transmission electron microscopy.
    Nguyen NT; Nelayah J; Alloyeau D; Wang G; Piccolo L; Afanasiev P; Ricolleau C
    Phys Chem Chem Phys; 2018 May; 20(18):13030-13037. PubMed ID: 29708561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.