These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27216986)

  • 1. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes.
    Kjellander R
    Phys Chem Chem Phys; 2020 Oct; 22(41):23952-23985. PubMed ID: 33073810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges.
    Kjellander R
    J Chem Phys; 2018 May; 148(19):193701. PubMed ID: 30307204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions.
    Kjellander R
    J Chem Phys; 2016 Sep; 145(12):124503. PubMed ID: 27782655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling Analysis of the Screening Length in Concentrated Electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Phys Rev Lett; 2017 Jul; 119(2):026002. PubMed ID: 28753344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long range electrostatic forces in ionic liquids.
    Gebbie MA; Smith AM; Dobbs HA; Lee AA; Warr GG; Banquy X; Valtiner M; Rutland MW; Israelachvili JN; Perkin S; Atkin R
    Chem Commun (Camb); 2017 Jan; 53(7):1214-1224. PubMed ID: 28000809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening length for finite-size ions in concentrated electrolytes.
    Adar RM; Safran SA; Diamant H; Andelman D
    Phys Rev E; 2019 Oct; 100(4-1):042615. PubMed ID: 31771021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-entrant swelling and redissolution of polyelectrolytes arises from an increased electrostatic decay length at high salt concentrations.
    Liu G; Parsons D; Craig VSJ
    J Colloid Interface Sci; 2020 Nov; 579():369-378. PubMed ID: 32615480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decay behavior of screened electrostatic surface forces in ionic liquids: the vital role of non-local electrostatics.
    Kjellander R
    Phys Chem Chem Phys; 2016 Jul; 18(28):18985-9000. PubMed ID: 27356099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquids behave as dilute electrolyte solutions.
    Gebbie MA; Valtiner M; Banquy X; Fox ET; Henderson WA; Israelachvili JN
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9674-9. PubMed ID: 23716690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes.
    Krucker-Velasquez E; Swan JW
    J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A screening of results on the decay length in concentrated electrolytes.
    Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C
    Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations.
    Coles SW; Park C; Nikam R; Kanduč M; Dzubiella J; Rotenberg B
    J Phys Chem B; 2020 Mar; 124(9):1778-1786. PubMed ID: 32031810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.
    Uralcan B; Aksay IA; Debenedetti PG; Limmer DT
    J Phys Chem Lett; 2016 Jul; 7(13):2333-8. PubMed ID: 27259040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes.
    Kjellander R
    Soft Matter; 2019 Jul; 15(29):5866-5895. PubMed ID: 31243425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic Screening Length in Concentrated Salt Solutions.
    Gaddam P; Ducker W
    Langmuir; 2019 Apr; 35(17):5719-5727. PubMed ID: 30945875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
    Buyukdagli S; Achim CV; Ala-Nissila T
    J Chem Phys; 2012 Sep; 137(10):104902. PubMed ID: 22979885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dilute or Concentrated Electrolyte Solutions? Insight from Ionic Liquid/Water Electrolytes.
    Sha M; Dong H; Luo F; Tang Z; Zhu G; Wu G
    J Phys Chem Lett; 2015 Sep; 6(18):3713-20. PubMed ID: 26713896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of excess Gibbs energy of electrolyte solutions: a new model for aqueous solutions.
    Dougherty RC; Howard LN
    Biophys Chem; 2003 Sep; 105(2-3):269-78. PubMed ID: 14499899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.