These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 27217047)
41. Liver Transplant Patient Carriers of Polymorphism Cyp3a5*1 Donors May Need More Doses of Tacrolimus From the First Month After Transplantation. Argudo A; González de Aledo JM; Alía P; Ramírez P; Serrano T; Fabregat J; Castellote J Transplant Proc; 2015 Oct; 47(8):2388-92. PubMed ID: 26518936 [TBL] [Abstract][Full Text] [Related]
42. Tacrolimus Dose Optimization Strategy for Refractory Ulcerative Colitis Based on the Cytochrome P450 3A5 Polymorphism Prediction Using Trough Concentration after 24 Hours. Onodera M; Endo K; Naito T; Moroi R; Kuroha M; Kanazawa Y; Kimura T; Shiga H; Kakuta Y; Negoro K; Kinouchi Y; Shimosegawa T Digestion; 2018; 97(1):90-96. PubMed ID: 29393157 [TBL] [Abstract][Full Text] [Related]
43. Hepatic drug interaction between tacrolimus and lansoprazole in a bone marrow transplant patient receiving voriconazole and harboring CYP2C19 and CYP3A5 heterozygous mutations. Iwamoto T; Monma F; Fujieda A; Nakatani K; Katayama N; Okuda M Clin Ther; 2011 Aug; 33(8):1077-80. PubMed ID: 21802143 [TBL] [Abstract][Full Text] [Related]
44. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation. Benkali K; Rostaing L; Premaud A; Woillard JB; Saint-Marcoux F; Urien S; Kamar N; Marquet P; Rousseau A Clin Pharmacokinet; 2010 Oct; 49(10):683-92. PubMed ID: 20818834 [TBL] [Abstract][Full Text] [Related]
45. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus. Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728 [TBL] [Abstract][Full Text] [Related]
46. Pharmacokinetic and CYP3A5 pharmacogenetic differences between once- and twice-daily tacrolimus from the first dosing day to 1 year after renal transplantation. Satoh S; Niioka T; Kagaya H; Numakura K; Inoue T; Saito M; Komine N; Narita S; Tsuchiya N; Habuchi T; Miura M Pharmacogenomics; 2014 Aug; 15(11):1495-506. PubMed ID: 25303300 [TBL] [Abstract][Full Text] [Related]
47. Differential impact of the CYP3A5*1 and CYP3A5*3 alleles on pre-dose concentrations of two tacrolimus formulations. Wehland M; Bauer S; Brakemeier S; Burgwinkel P; Glander P; Kreutz R; Lorkowski C; Slowinski T; Neumayer HH; Budde K Pharmacogenet Genomics; 2011 Apr; 21(4):179-84. PubMed ID: 20818295 [TBL] [Abstract][Full Text] [Related]
48. Population pharmacokinetics and pharmacogenetics of once daily tacrolimus formulation in stable liver transplant recipients. Moes DJ; van der Bent SA; Swen JJ; van der Straaten T; Inderson A; Olofsen E; Verspaget HW; Guchelaar HJ; den Hartigh J; van Hoek B Eur J Clin Pharmacol; 2016 Feb; 72(2):163-74. PubMed ID: 26521259 [TBL] [Abstract][Full Text] [Related]
49. The impact of CYP3A5 and MDR1 polymorphisms on tacrolimus dosage requirements and trough concentrations in pediatric renal transplant recipients. Shilbayeh S; Zmeili R; Almardini RI Saudi J Kidney Dis Transpl; 2013 Nov; 24(6):1125-36. PubMed ID: 24231473 [TBL] [Abstract][Full Text] [Related]
50. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation. Niioka T; Kagaya H; Saito M; Inoue T; Numakura K; Habuchi T; Satoh S; Miura M Int J Mol Sci; 2015 Jan; 16(1):1840-54. PubMed ID: 25594874 [TBL] [Abstract][Full Text] [Related]
51. Reduced variability of tacrolimus trough level in once-daily tacrolimus-based Taiwanese kidney transplant recipients with high-expressive genotype of cytochrome P450 3A5. Wu MJ; Chang CH; Cheng CY; Shu KH; Chen CH; Cheng CH; Yu TM; Chuang YW; Huang ST; Tsai SF; Ho HC; Li JR; Shiu YN; Fu YC Transplant Proc; 2014; 46(2):403-5. PubMed ID: 24655974 [TBL] [Abstract][Full Text] [Related]
52. Pharmacogenetic-based strategy using de novo tacrolimus once daily after kidney transplantation: prospective pilot study. De Meyer M; Haufroid V; Kanaan N; Darius T; Buemi A; De Pauw L; Eddour DC; Wallemacq P; Mourad M Pharmacogenomics; 2016 Jun; 17(9):1019-27. PubMed ID: 27266721 [TBL] [Abstract][Full Text] [Related]
53. Impact of the CYP3A5*1 Allele on the Pharmacokinetics of Tacrolimus in Japanese Heart Transplant Patients. Uno T; Wada K; Matsuda S; Terada Y; Oita A; Kawase A; Takada M Eur J Drug Metab Pharmacokinet; 2018 Dec; 43(6):665-673. PubMed ID: 29691732 [TBL] [Abstract][Full Text] [Related]
54. Benefits of minimizing immunosuppressive dosage according to cytochrome P450 3A5 genotype in liver transplant patients: findings from a single-center study. Wang L; Li N; Wang MX; Lu SC Genet Mol Res; 2015 Apr; 14(2):3191-9. PubMed ID: 25966085 [TBL] [Abstract][Full Text] [Related]
55. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Zhang X; Liu ZH; Zheng JM; Chen ZH; Tang Z; Chen JS; Li LS Clin Transplant; 2005 Oct; 19(5):638-43. PubMed ID: 16146556 [TBL] [Abstract][Full Text] [Related]
56. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients. Prytuła AA; Cransberg K; Bouts AH; van Schaik RH; de Jong H; de Wildt SN; Mathôt RA Clin Pharmacokinet; 2016 Sep; 55(9):1129-43. PubMed ID: 27138785 [TBL] [Abstract][Full Text] [Related]
57. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level. Nair SS; Sarasamma S; Gracious N; George J; Anish TS; Radhakrishnan R Exp Clin Transplant; 2015 Apr; 13 Suppl 1():197-200. PubMed ID: 25894154 [TBL] [Abstract][Full Text] [Related]
58. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. Yang TH; Chen YK; Xue F; Han LZ; Shen CH; Zhou T; Luo Y; Zhang JJ; Xia Q Int J Clin Pract Suppl; 2015 May; (183):53-62. PubMed ID: 26176181 [TBL] [Abstract][Full Text] [Related]
59. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. de Jonge H; Metalidis C; Naesens M; Lambrechts D; Kuypers DR Pharmacogenomics; 2011 Sep; 12(9):1281-91. PubMed ID: 21770725 [TBL] [Abstract][Full Text] [Related]
60. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]