BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27217337)

  • 1. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression.
    Lebreton A; Cossart P
    RNA Biol; 2017 May; 14(5):460-470. PubMed ID: 27217337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-coding RNA world of the bacterial pathogen Listeria monocytogenes.
    Mellin JR; Cossart P
    RNA Biol; 2012 Apr; 9(4):372-8. PubMed ID: 22336762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes.
    Loh E; Dussurget O; Gripenland J; Vaitkevicius K; Tiensuu T; Mandin P; Repoila F; Buchrieser C; Cossart P; Johansson J
    Cell; 2009 Nov; 139(4):770-9. PubMed ID: 19914169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.
    Friedman S; Linsky M; Lobel L; Rabinovich L; Sigal N; Herskovits AA
    Infect Immun; 2017 Jun; 85(6):. PubMed ID: 28396325
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA.
    Lobel L; Sigal N; Borovok I; Belitsky BR; Sonenshein AL; Herskovits AA
    Mol Microbiol; 2015 Feb; 95(4):624-44. PubMed ID: 25430920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial and cellular RNAs at work during Listeria infection.
    Sesto N; Koutero M; Cossart P
    Future Microbiol; 2014; 9(9):1025-37. PubMed ID: 25340833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Role of Regulatory Non-Coding RNAs in
    Izar B; Mraheil MA; Hain T
    Int J Mol Sci; 2011; 12(8):5070-9. PubMed ID: 21954346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the study of Listeria monocytogenes has led to new concepts in biology.
    Rolhion N; Cossart P
    Future Microbiol; 2017 Jun; 12():621-638. PubMed ID: 28604108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species.
    Wurtzel O; Sesto N; Mellin JR; Karunker I; Edelheit S; Bécavin C; Archambaud C; Cossart P; Sorek R
    Mol Syst Biol; 2012 May; 8():583. PubMed ID: 22617957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer.
    Tiensuu T; Guerreiro DN; Oliveira AH; O'Byrne C; Johansson J
    Microbiology (Reading); 2019 Aug; 165(8):819-833. PubMed ID: 31107205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Bacterial Virulence with RNA.
    Quereda JJ; Cossart P
    Annu Rev Microbiol; 2017 Sep; 71():263-280. PubMed ID: 28886688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes.
    Schultze T; Izar B; Qing X; Mannala GK; Hain T
    Front Cell Infect Microbiol; 2014; 4():135. PubMed ID: 25325017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.
    Sternkopf Lillebæk EM; Lambert Nielsen S; Scheel Thomasen R; Færgeman NJ; Kallipolitis BH
    Res Microbiol; 2017; 168(6):547-557. PubMed ID: 28344104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Listeria transcriptional landscape from saprophytism to virulence.
    Toledo-Arana A; Dussurget O; Nikitas G; Sesto N; Guet-Revillet H; Balestrino D; Loh E; Gripenland J; Tiensuu T; Vaitkevicius K; Barthelemy M; Vergassola M; Nahori MA; Soubigou G; Régnault B; Coppée JY; Lecuit M; Johansson J; Cossart P
    Nature; 2009 Jun; 459(7249):950-6. PubMed ID: 19448609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA.
    Mellin JR; Koutero M; Dar D; Nahori MA; Sorek R; Cossart P
    Science; 2014 Aug; 345(6199):940-3. PubMed ID: 25146292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A riboswitch-regulated antisense RNA in Listeria monocytogenes.
    Mellin JR; Tiensuu T; Bécavin C; Gouin E; Johansson J; Cossart P
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13132-7. PubMed ID: 23878253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression.
    Freitag NE
    Future Microbiol; 2006 Jun; 1(1):89-101. PubMed ID: 17661688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes.
    Anast JM; Schmitz-Esser S
    PLoS One; 2020; 15(7):e0233945. PubMed ID: 32701964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-based mechanisms of virulence control in Enterobacteriaceae.
    Heroven AK; Nuss AM; Dersch P
    RNA Biol; 2017 May; 14(5):471-487. PubMed ID: 27442607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in bacterial transcriptome understanding: From overlapping transcription to the excludon concept.
    Toledo-Arana A; Lasa I
    Mol Microbiol; 2020 Mar; 113(3):593-602. PubMed ID: 32185833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.