These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27217337)

  • 1. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression.
    Lebreton A; Cossart P
    RNA Biol; 2017 May; 14(5):460-470. PubMed ID: 27217337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-coding RNA world of the bacterial pathogen Listeria monocytogenes.
    Mellin JR; Cossart P
    RNA Biol; 2012 Apr; 9(4):372-8. PubMed ID: 22336762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes.
    Loh E; Dussurget O; Gripenland J; Vaitkevicius K; Tiensuu T; Mandin P; Repoila F; Buchrieser C; Cossart P; Johansson J
    Cell; 2009 Nov; 139(4):770-9. PubMed ID: 19914169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.
    Friedman S; Linsky M; Lobel L; Rabinovich L; Sigal N; Herskovits AA
    Infect Immun; 2017 Jun; 85(6):. PubMed ID: 28396325
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA.
    Lobel L; Sigal N; Borovok I; Belitsky BR; Sonenshein AL; Herskovits AA
    Mol Microbiol; 2015 Feb; 95(4):624-44. PubMed ID: 25430920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial and cellular RNAs at work during Listeria infection.
    Sesto N; Koutero M; Cossart P
    Future Microbiol; 2014; 9(9):1025-37. PubMed ID: 25340833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Role of Regulatory Non-Coding RNAs in
    Izar B; Mraheil MA; Hain T
    Int J Mol Sci; 2011; 12(8):5070-9. PubMed ID: 21954346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the study of Listeria monocytogenes has led to new concepts in biology.
    Rolhion N; Cossart P
    Future Microbiol; 2017 Jun; 12():621-638. PubMed ID: 28604108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species.
    Wurtzel O; Sesto N; Mellin JR; Karunker I; Edelheit S; Bécavin C; Archambaud C; Cossart P; Sorek R
    Mol Syst Biol; 2012 May; 8():583. PubMed ID: 22617957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer.
    Tiensuu T; Guerreiro DN; Oliveira AH; O'Byrne C; Johansson J
    Microbiology (Reading); 2019 Aug; 165(8):819-833. PubMed ID: 31107205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Bacterial Virulence with RNA.
    Quereda JJ; Cossart P
    Annu Rev Microbiol; 2017 Sep; 71():263-280. PubMed ID: 28886688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes.
    Schultze T; Izar B; Qing X; Mannala GK; Hain T
    Front Cell Infect Microbiol; 2014; 4():135. PubMed ID: 25325017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.
    Sternkopf Lillebæk EM; Lambert Nielsen S; Scheel Thomasen R; Færgeman NJ; Kallipolitis BH
    Res Microbiol; 2017; 168(6):547-557. PubMed ID: 28344104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Listeria transcriptional landscape from saprophytism to virulence.
    Toledo-Arana A; Dussurget O; Nikitas G; Sesto N; Guet-Revillet H; Balestrino D; Loh E; Gripenland J; Tiensuu T; Vaitkevicius K; Barthelemy M; Vergassola M; Nahori MA; Soubigou G; Régnault B; Coppée JY; Lecuit M; Johansson J; Cossart P
    Nature; 2009 Jun; 459(7249):950-6. PubMed ID: 19448609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA.
    Mellin JR; Koutero M; Dar D; Nahori MA; Sorek R; Cossart P
    Science; 2014 Aug; 345(6199):940-3. PubMed ID: 25146292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A riboswitch-regulated antisense RNA in Listeria monocytogenes.
    Mellin JR; Tiensuu T; Bécavin C; Gouin E; Johansson J; Cossart P
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13132-7. PubMed ID: 23878253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression.
    Freitag NE
    Future Microbiol; 2006 Jun; 1(1):89-101. PubMed ID: 17661688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes.
    Anast JM; Schmitz-Esser S
    PLoS One; 2020; 15(7):e0233945. PubMed ID: 32701964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-based mechanisms of virulence control in Enterobacteriaceae.
    Heroven AK; Nuss AM; Dersch P
    RNA Biol; 2017 May; 14(5):471-487. PubMed ID: 27442607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in bacterial transcriptome understanding: From overlapping transcription to the excludon concept.
    Toledo-Arana A; Lasa I
    Mol Microbiol; 2020 Mar; 113(3):593-602. PubMed ID: 32185833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.