These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27217528)

  • 1. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.
    Grönlund L; Hölttä T; Mäkelä A
    Tree Physiol; 2016 Aug; 36(8):994-1006. PubMed ID: 27217528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales.
    Massonnet C; Regnard JL; Lauri PE; Costes E; Sinoquet H
    Tree Physiol; 2008 May; 28(5):665-78. PubMed ID: 18316299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).
    Sellin A; Ounapuu E; Kupper P
    Physiol Plant; 2008 Nov; 134(3):412-20. PubMed ID: 18513374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).
    Sterck FJ; Zweifel R; Sass-Klaassen U; Chowdhury Q
    Tree Physiol; 2008 Apr; 28(4):529-36. PubMed ID: 18244940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure.
    Thérézien M; Palmroth S; Brady R; Oren R
    Tree Physiol; 2007 Oct; 27(10):1375-87. PubMed ID: 17669728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current-year shoot hydraulic structure in two boreal conifers-implications of growth habit on water potential.
    Mäkelä A; Grönlund L; Schiestl-Aalto P; Kalliokoski T; Hölttä T
    Tree Physiol; 2019 Dec; 39(12):1995-2007. PubMed ID: 31728541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic adjustment of Scots pine across Europe.
    Martínez-Vilalta J; Cochard H; Mencuccini M; Sterck F; Herrero A; Korhonen JFJ; Llorens P; Nikinmaa E; Nolè A; Poyatos R; Ripullone F; Sass-Klaassen U; Zweifel R
    New Phytol; 2009 Oct; 184(2):353-364. PubMed ID: 19674333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative shoot height and irradiance and the shoot and leaf properties of Quercus serrata saplings.
    Takahashi K; Okada J; Urata E
    Tree Physiol; 2006 Aug; 26(8):1035-42. PubMed ID: 16651253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic function contributes to the variation in shoot morphology within the crown in Quercus crispula.
    Yoshimura K
    Tree Physiol; 2011 Jul; 31(7):774-81. PubMed ID: 21849594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees.
    Vanderklein D; Martínez-Vilalta J; Lee S; Mencuccini M
    Tree Physiol; 2007 Jan; 27(1):71-9. PubMed ID: 17169908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy.
    Stenberg P; Palmroth S; Bond BJ; Sprugel DG; Smolander H
    Tree Physiol; 2001 Aug; 21(12-13):805-14. PubMed ID: 11498328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geographic variation in shoot traits and branching intensity in relation to leaf size in Fagus crenata: A common garden experiment.
    Osada N; Nabeshima E; Hiura T
    Am J Bot; 2015 Jun; 102(6):878-87. PubMed ID: 26101414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity in hydraulic architecture of Scots pine across Eurasia.
    Poyatos R; Martínez-Vilalta J; Cermák J; Ceulemans R; Granier A; Irvine J; Köstner B; Lagergren F; Meiresonne L; Nadezhdina N; Zimmermann R; Llorens P; Mencuccini M
    Oecologia; 2007 Aug; 153(2):245-59. PubMed ID: 17453248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE.
    Verbeeck H; Steppe K; Nadezhdina N; Op de Beeck M; Deckmyn G; Meiresonne L; Lemeur R; Cermák J; Ceulemans R; Janssens IA
    Tree Physiol; 2007 Dec; 27(12):1671-85. PubMed ID: 17938099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).
    Aguadé D; Poyatos R; Gómez M; Oliva J; Martínez-Vilalta J
    Tree Physiol; 2015 Mar; 35(3):229-42. PubMed ID: 25724949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.
    Reid DE; Silins U; Lieffers VJ
    Tree Physiol; 2003 Aug; 23(12):833-40. PubMed ID: 12865249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.
    Schuldt B; Leuschner C; Brock N; Horna V
    Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duration of shoot elongation in Scots pine varies within the crown and between years.
    Schiestl-Aalto P; Nikinmaa E; Mäkelä A
    Ann Bot; 2013 Oct; 112(6):1181-91. PubMed ID: 23985987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.
    Zweifel R; Steppe K; Sterck FJ
    J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.