These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27217826)

  • 21. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement.
    Caimmi M; Visani E; Digiacomo F; Scano A; Chiavenna A; Gramigna C; Molinari Tosatti L; Franceschetti S; Molteni F; Panzica F
    Biomed Res Int; 2016; 2016():7051340. PubMed ID: 27057546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroencephalographic Changes of Brain Oscillatory Activity After Upper Limb Somatic Sensation Training in a Patient With Somatosensory Deficit After Stroke.
    Gandolfi M; Formaggio E; Geroin C; Storti SF; Boscolo Galazzo I; Waldner A; Manganotti P; Smania N
    Clin EEG Neurosci; 2015 Oct; 46(4):347-52. PubMed ID: 25185438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial.
    Sullivan JL; Bhagat NA; Yozbatiran N; Paranjape R; Losey CG; Grossman RG; Contreras-Vidal JL; Francisco GE; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():122-127. PubMed ID: 28813805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of artifacts on movement intention decoding from EEG activity in severely paralyzed stroke patients.
    Lopez-Larraz E; Bibian C; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():901-906. PubMed ID: 28813935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance.
    Formaggio E; Storti SF; Boscolo Galazzo I; Gandolfi M; Geroin C; Smania N; Fiaschi A; Manganotti P
    Brain Topogr; 2015 Mar; 28(2):352-63. PubMed ID: 24838817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis.
    Loopez-Larraz E; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2000-2003. PubMed ID: 30440792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling.
    Combrisson E; Perrone-Bertolotti M; Soto JL; Alamian G; Kahane P; Lachaux JP; Guillot A; Jerbi K
    Neuroimage; 2017 Feb; 147():473-487. PubMed ID: 27915117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation.
    Jochumsen M; Niazi IK; Dremstrup K; Kamavuako EN
    Med Biol Eng Comput; 2016 Oct; 54(10):1491-501. PubMed ID: 26639017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploration of neural correlates of movement intention based on characterisation of temporal dependencies in electroencephalography.
    Wairagkar M; Hayashi Y; Nasuto SJ
    PLoS One; 2018; 13(3):e0193722. PubMed ID: 29509785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG signatures of arm isometric exertions in preparation, planning and execution.
    Nasseroleslami B; Lakany H; Conway BA
    Neuroimage; 2014 Apr; 90():1-14. PubMed ID: 24355482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG.
    Lew E; Chavarriaga R; Zhang H; Seeck M; Millan Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3280-3. PubMed ID: 23366626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients.
    Jochumsen M; Niazi IK; Mrachacz-Kersting N; Jiang N; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056003. PubMed ID: 26214339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E; Ibáñez J; Trincado-Alonso F; Monge-Pereira E; Pons JL; Montesano L
    Int J Neural Syst; 2018 Sep; 28(7):1750060. PubMed ID: 29463157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of self-paced reaching movement intention from EEG signals.
    Lew E; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neuroeng; 2012; 5():13. PubMed ID: 23055968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
    Tombini M; Rigosa J; Zappasodi F; Porcaro C; Citi L; Carpaneto J; Rossini PM; Micera S
    Neurorehabil Neural Repair; 2012; 26(3):275-81. PubMed ID: 21730360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.