These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27218004)

  • 1. Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation.
    Patel T; Meher R
    Springerplus; 2016; 5():489. PubMed ID: 27218004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid yang transform adomian decomposition method for solving time-fractional nonlinear partial differential equation.
    Bekela AS; Deresse AT
    BMC Res Notes; 2024 Aug; 17(1):226. PubMed ID: 39148140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of Convection and Internal Heat Generation on the Thermal Distribution of a Porous Dovetail Fin with Radiative Heat Transfer by Spectral Collocation Method.
    Sowmya G; Lashin MMA; Khan MI; Kumar RSV; Jagadeesha KC; Prasannakumara BC; Guedri K; Bafakeeh OT; Mohamed Tag-ElDin ES; Galal AM
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation.
    Wang K; Liu S
    Springerplus; 2016; 5(1):865. PubMed ID: 27386314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Laplace-Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations.
    Shah R; Khan H; Arif M; Kumam P
    Entropy (Basel); 2019 Mar; 21(4):. PubMed ID: 33267049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified conformable double Laplace-Sumudu approach with applications.
    Ahmed SA; Saadeh R; Qazza A; Elzaki TM
    Heliyon; 2023 May; 9(5):e15891. PubMed ID: 37168890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and numerical investigation of heat transfer of porous fin in a local thermal non-equilibrium state.
    Jalili P; Ghadiri Alamdari S; Jalili B; Shater A; D Ganji D
    Heliyon; 2024 Feb; 10(4):e26424. PubMed ID: 38420422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method.
    Khan H; Shah R; Kumam P; Arif M
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of a Nonlinear System of Fractional Differential Equations with Deviated Arguments Via Adomian Decomposition Method.
    Afreen A; Raheem A
    Int J Appl Comput Math; 2022; 8(5):269. PubMed ID: 36196138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations.
    Agarwal RP; Mofarreh F; Shah R; Luangboon W; Nonlaopon K
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative.
    Thabet STM; Abdo MS; Shah K
    Adv Differ Equ; 2021; 2021(1):184. PubMed ID: 33777126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation.
    Din ZU; Ali A; Khan ZA; Zaman G
    Math Biosci Eng; 2022 Aug; 19(11):11491-11511. PubMed ID: 36124600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-analytic solutions of nonlinear multidimensional fractional differential equations.
    Botros M; Ziada EAA; El-Kalla IL
    Math Biosci Eng; 2022 Sep; 19(12):13306-13320. PubMed ID: 36654048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of thermal distribution through an inclined radiative-convective porous fin of concave profile using generalized residual power series method (GRPSM).
    Varun Kumar RS; Sowmya G; Jayaprakash MC; Prasannakumara BC; Khan MI; Guedri K; Kumam P; Sitthithakerngkiet K; Galal AM
    Sci Rep; 2022 Aug; 12(1):13275. PubMed ID: 35918433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of COVID-19 epidemic model with sumudu transform.
    Farman M; Azeem M; Ahmad MO
    AIMS Public Health; 2022; 9(2):316-330. PubMed ID: 35634031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a time-fractional COVID-19 mathematical model with singular kernel.
    Adnan ; Ali A; Ur Rahmamn M; Shah Z; Kumam P
    Adv Contin Discret Model; 2022; 2022(1):34. PubMed ID: 35462615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of
    Obeidat NA; Rawashdeh MS; Al Smadi MN
    Sci Prog; 2024; 107(2):368504241256864. PubMed ID: 38794894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy generation from convective-radiative moving exponential porous fins with variable thermal conductivity and internal heat generations.
    Din ZU; Ali A; De la Sen M; Zaman G
    Sci Rep; 2022 Feb; 12(1):1791. PubMed ID: 35110597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving protoplanetary structure equations using Adomian decomposition method.
    Paul GC; Khatun S; Nuruzzaman M; Kumar D; Ali ME; Bilkis F; Barman MC
    Heliyon; 2021 Oct; 7(10):e08213. PubMed ID: 34761131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the convective heat transfer through straight fin by using the Riemann-Liouville type fractional derivative: Probed by machine learning.
    Waseem ; Ullah A; Ali S; Awwad FA; Ismail EAA
    Heliyon; 2024 Feb; 10(4):e25853. PubMed ID: 38384546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.