These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27218224)

  • 21. Sublattice localized electronic states in atomically resolved graphene-Pt(111) edge-boundaries.
    Merino P; Rodrigo L; Pinardi AL; Méndez J; López MF; Pou P; Pérez R; Martín Gago JA
    ACS Nano; 2014 Apr; 8(4):3590-6. PubMed ID: 24654926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The atomistic mechanism of carbon nanotube cutting catalyzed by nickel under an electron beam.
    Lebedeva IV; Chamberlain TW; Popov AM; Knizhnik AA; Zoberbier T; Biskupek J; Kaiser U; Khlobystov AN
    Nanoscale; 2014 Dec; 6(24):14877-90. PubMed ID: 25363681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Step-edge self-assembly during graphene nucleation on a nickel surface: QM/MD simulations.
    Wang Y; Page AJ; Li HB; Qian HJ; Jiao MG; Wu ZJ; Morokuma K; Irle S
    Nanoscale; 2014 Jan; 6(1):140-4. PubMed ID: 24202187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Edge state magnetism of single layer graphene nanostructures.
    Bhowmick S; Shenoy VB
    J Chem Phys; 2008 Jun; 128(24):244717. PubMed ID: 18601375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons.
    Xiao B; Ding YH; Sun CC
    Phys Chem Chem Phys; 2011 Feb; 13(7):2732-7. PubMed ID: 21152527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of Klein Edge Doublets from Graphene Monolayers.
    Kim JS; Warner JH; Robertson AW; Kirkland AI
    ACS Nano; 2015 Sep; 9(9):8916-22. PubMed ID: 26284501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles.
    Wei J; Xu Z; Wang H; Tian X; Yang S; Wang L; Wang W; Bai X
    Nanotechnology; 2014 Nov; 25(46):465709. PubMed ID: 25361213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation.
    Radovic LR
    J Am Chem Soc; 2009 Dec; 131(47):17166-75. PubMed ID: 19891428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-energy termination of graphene edges via the formation of narrow nanotubes.
    Ivanovskaya VV; Zobelli A; Wagner P; Heggie MI; Briddon PR; Rayson MJ; Ewels CP
    Phys Rev Lett; 2011 Aug; 107(6):065502. PubMed ID: 21902339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QM/MD studies on graphene growth from small islands on the Ni(111) surface.
    Jiao M; Song W; Qian HJ; Wang Y; Wu Z; Irle S; Morokuma K
    Nanoscale; 2016 Feb; 8(5):3067-74. PubMed ID: 26785739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes.
    Leong WS; Luo X; Li Y; Khoo KH; Quek SY; Thong JT
    ACS Nano; 2015 Jan; 9(1):869-77. PubMed ID: 25517793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of Stone-Wales edge: Multistep reconstruction and growth mechanisms of zigzag nanographene.
    Dang JS; Wang WW; Zheng JJ; Nagase S; Zhao X
    J Comput Chem; 2017 Oct; 38(26):2241-2247. PubMed ID: 28718989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomically-resolved edge states on surface-nanotemplated graphene explored at room temperature.
    Merino P; Santos H; Pinardi AL; Chico L; Martin-Gago JA
    Nanoscale; 2017 Mar; 9(11):3905-3911. PubMed ID: 28261718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the formation mechanism of the "pancake" decahedron gold nanoparticle.
    Grochola G; Russo SP; Snook IK
    J Chem Phys; 2007 Dec; 127(22):224705. PubMed ID: 18081412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localized edge vibrations and edge reconstruction by joule heating in graphene nanostructures.
    Engelund M; Fürst JA; Jauho AP; Brandbyge M
    Phys Rev Lett; 2010 Jan; 104(3):036807. PubMed ID: 20366673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.