These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27218449)

  • 1. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition.
    Felch DL; Khakhalin AS; Aizenman CD
    Elife; 2016 May; 5():. PubMed ID: 27218449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cellular mechanism for inverse effectiveness in multisensory integration.
    Truszkowski TL; Carrillo OA; Bleier J; Ramirez-Vizcarrondo CM; Felch DL; McQuillan M; Truszkowski CP; Khakhalin AS; Aizenman CD
    Elife; 2017 Mar; 6():. PubMed ID: 28315524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
    Khakhalin AS; Koren D; Gu J; Xu H; Aizenman CD
    Eur J Neurosci; 2014 Sep; 40(6):2948-62. PubMed ID: 24995793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.
    Hamodi AS; Pratt KG
    J Neurophysiol; 2015 Jan; 113(1):400-7. PubMed ID: 25343786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of multisensory convergence in the Xenopus optic tectum.
    Deeg KE; Sears IB; Aizenman CD
    J Neurophysiol; 2009 Dec; 102(6):3392-404. PubMed ID: 19793878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum.
    Kardamakis AA; Pérez-Fernández J; Grillner S
    Elife; 2016 Sep; 5():. PubMed ID: 27635636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum.
    Hamodi AS; Liu Z; Pratt KG
    Elife; 2016 Nov; 5():. PubMed ID: 27879199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience.
    Busch SE; Khakhalin AS
    J Neurophysiol; 2019 Sep; 122(3):1084-1096. PubMed ID: 31291161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuospatial information in the retinotectal system of xenopus before correct image formation by the developing eye.
    Richards BA; van Rheede JJ; Akerman CJ
    Dev Neurobiol; 2012 Apr; 72(4):507-19. PubMed ID: 21721138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent transcription of BDNF enhances visual acuity during development.
    Schwartz N; Schohl A; Ruthazer ES
    Neuron; 2011 May; 70(3):455-67. PubMed ID: 21555072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic circuits control stimulus-instructed receptive field development in the optic tectum.
    Richards BA; Voss OP; Akerman CJ
    Nat Neurosci; 2010 Sep; 13(9):1098-106. PubMed ID: 20694002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons.
    Liu Z; Donnelly KB; Pratt KG
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of the retinotectal projections from compound eyes in Xenopus.
    Straznicky C; Gaze RM; Keating MJ
    J Embryol Exp Morphol; 1981 Apr; 62():13-35. PubMed ID: 7276807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system.
    Vislay-Meltzer RL; Kampff AR; Engert F
    Neuron; 2006 Apr; 50(1):101-14. PubMed ID: 16600859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum.
    Dong W; Lee RH; Xu H; Yang S; Pratt KG; Cao V; Song YK; Nurmikko A; Aizenman CD
    J Neurophysiol; 2009 Feb; 101(2):803-15. PubMed ID: 19073807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological Recording for Study of
    Luo Y; Shen W; Cline HT
    Cold Spring Harb Protoc; 2021 Jun; 2021(6):. PubMed ID: 33785560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles.
    Khakhalin AS; Aizenman CD
    PLoS One; 2012; 7(4):e34446. PubMed ID: 22496804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system.
    McKeown CR; Thompson CK; Cline HT
    J Exp Biol; 2017 Feb; 220(Pt 3):358-368. PubMed ID: 27875263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.