These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27218453)

  • 1. Cell-specific synaptic plasticity induced by network oscillations.
    Zarnadze S; Bäuerle P; Santos-Torres J; Böhm C; Schmitz D; Geiger JR; Dugladze T; Gloveli T
    Elife; 2016 May; 5():. PubMed ID: 27218453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis.
    Hollnagel JO; Elzoheiry S; Gorgas K; Kins S; Beretta CA; Kirsch J; Kuhse J; Kann O; Kiss E
    PLoS One; 2019; 14(1):e0209228. PubMed ID: 30645585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network.
    Polepalli JS; Wu H; Goswami D; Halpern CH; Südhof TC; Malenka RC
    Nat Neurosci; 2017 Feb; 20(2):219-229. PubMed ID: 28067903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons.
    Patenaude C; Massicotte G; Lacaille JC
    Eur J Neurosci; 2005 Jul; 22(1):179-88. PubMed ID: 16029207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus.
    Bartley AF; Lucas EK; Brady LJ; Li Q; Hablitz JJ; Cowell RM; Dobrunz LE
    J Neurosci; 2015 Nov; 35(46):15276-90. PubMed ID: 26586816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations.
    Klausberger T; Marton LF; O'Neill J; Huck JH; Dalezios Y; Fuentealba P; Suen WY; Papp E; Kaneko T; Watanabe M; Csicsvari J; Somogyi P
    J Neurosci; 2005 Oct; 25(42):9782-93. PubMed ID: 16237182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balanced synaptic currents underlie low-frequency oscillations in the subiculum.
    Royzen F; Williams S; Fernandez FR; White JA
    Hippocampus; 2019 Dec; 29(12):1178-1189. PubMed ID: 31301195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of type I mGluRs predicts plasticity in the hippocampal stratum radiatum interneurons.
    Nufer TM; Merrill C; Friend L; Hopkins Z; Boyce Z; Edwards JG
    Neurosci Lett; 2019 Nov; 712():134472. PubMed ID: 31499135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex.
    Blatow M; Rozov A; Katona I; Hormuzdi SG; Meyer AH; Whittington MA; Caputi A; Monyer H
    Neuron; 2003 Jun; 38(5):805-17. PubMed ID: 12797964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder.
    Paterno R; Marafiga JR; Ramsay H; Li T; Salvati KA; Baraban SC
    Cell Rep; 2021 Nov; 37(6):109970. PubMed ID: 34758298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular ATP inhibits excitatory synaptic input on parvalbumin positive interneurons and attenuates gamma oscillations via P2X4 receptors.
    Wildner F; Neuhäusel TS; Klemz A; Kovács R; Ulmann L; Geiger JRP; Gerevich Z
    Br J Pharmacol; 2024 Jun; 181(11):1635-1653. PubMed ID: 38073073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.
    Mao W; Watanabe T; Cho S; Frost JL; Truong T; Zhao X; Futai K
    Eur J Neurosci; 2015 Apr; 41(8):1025-35. PubMed ID: 25816842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.
    Szabó GG; Papp OI; Máté Z; Szabó G; Hájos N
    Hippocampus; 2014 Dec; 24(12):1506-23. PubMed ID: 25044969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity.
    Matta JA; Pelkey KA; Craig MT; Chittajallu R; Jeffries BW; McBain CJ
    Nat Neurosci; 2013 Aug; 16(8):1032-41. PubMed ID: 23852113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.
    Donato F; Rompani SB; Caroni P
    Nature; 2013 Dec; 504(7479):272-6. PubMed ID: 24336286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network.
    Yap EL; Pettit NL; Davis CP; Nagy MA; Harmin DA; Golden E; Dagliyan O; Lin C; Rudolph S; Sharma N; Griffith EC; Harvey CD; Greenberg ME
    Nature; 2021 Feb; 590(7844):115-121. PubMed ID: 33299180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCNQ5 K(+) channels control hippocampal synaptic inhibition and fast network oscillations.
    Fidzinski P; Korotkova T; Heidenreich M; Maier N; Schuetze S; Kobler O; Zuschratter W; Schmitz D; Ponomarenko A; Jentsch TJ
    Nat Commun; 2015 Feb; 6():6254. PubMed ID: 25649132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.